Transposable Elements and Their Identification

  • Wojciech MakałowskiEmail author
  • Amit Pande
  • Valer Gotea
  • Izabela Makałowska
Part of the Methods in Molecular Biology book series (MIMB, volume 855)


Most genomes are populated by thousands of sequences that originated from mobile elements. On the one hand, these sequences present a real challenge in the process of genome analysis and annotation. On the other hand, there are very interesting biological subjects involved in many cellular processes. Here, we present an overview of transposable elements (TEs) biodiversity and their impact on genomic evolution. Finally, we discuss different approaches to the TEs detection and analyses.

Key words

Transposable elements Transposons Mobile elements Repetitive elements Genome analysis Genome evolution Junk DNA RepeatMasker TinT TEclass 


  1. 1.
    Britten, R. J., and Kohne, D. E. (1968) Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms, Science 161, 529–540.Google Scholar
  2. 2.
    Waring, M., and Britten, R. J. (1966) Nucleotide Sequence Repetition – a Rapidly Reassociating Fraction of Mouse DNA, Science 154, 791–794.PubMedGoogle Scholar
  3. 3.
    Makalowski, W. (2001) The human genome structure and organization, Acta Biochim Pol 48, 587–598.PubMedGoogle Scholar
  4. 4.
    C. elegans Sequencing Consortium. (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology, Science 282, 2012–2018.Google Scholar
  5. 5.
    SanMiguel, P., Tikhonov, A., Jin, Y. K., Motchoulskaia, N., Zakharov, D., Melake-Berhan, A., Springer, P. S., Edwards, K. J., Lee, M., Avramova, Z., and Bennetzen, J. L. (1996) Nested retrotransposons in the intergenic regions of the maize genome, Science 274, 765–768.PubMedGoogle Scholar
  6. 6.
    Keller, E. F. (1983) A feeling for the organism: the life and work of Barbara McClintock, W.H. Freeman, San Francisco.Google Scholar
  7. 7.
    McClintock, B. (1950) The origin and behavior of mutable loci in maize, Proc Natl Acad Sci U S A 36, 344–355.PubMedGoogle Scholar
  8. 8.
    McClintock, B. (1951) Chromosome Organization and Genic Expression, Cold Spring Harb Sym 16, 13–47.Google Scholar
  9. 9.
    McClintock, B. (1956) Controlling Elements and the Gene, Cold Spring Harb Sym 21, 197–216.Google Scholar
  10. 10.
    Malamy, M. H., Fiandt, M., and Szybalski, W. (1972) Electron microscopy of polar insertions in the lac operon of Escherichia coli, Mol Gen Genet 119, 207–222.PubMedGoogle Scholar
  11. 11.
    Ohno, S. (1972) So much “junk” DNA in our genome., In Brookhaven Symposia in Biology (Smith, H. H., Ed.), pp 366–370, Gordon & Breach, New York.Google Scholar
  12. 12.
    Brosius, J. (1991) Retroposons – seeds of evolution, Science 251, 753.PubMedGoogle Scholar
  13. 13.
    Makalowski, W., Mitchell, G. A., and Labuda, D. (1994) Alu sequences in the coding regions of mRNA: a source of protein variability, Trends Genet 10, 188–193.PubMedGoogle Scholar
  14. 14.
    Jordan, I. K., Rogozin, I. B., Glazko, G. V., and Koonin, E. V. (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements, Trends in Genetics 19, 68–72.PubMedGoogle Scholar
  15. 15.
    Thornburg, B. G., Gotea, V., and Makalowski, W. (2006) Transposable elements as a significant source of transcription regulating signals, Gene 365, 104–110.PubMedGoogle Scholar
  16. 16.
    Mahillon, J., and Chandler, M. (1998) Insertion sequences, Microbiol Mol Biol R 62, 725–774.Google Scholar
  17. 17.
    Nagy, Z., and Chandler, M. (2004) Regulation of transposition in bacteria, Res Microbiol 155, 387–398.PubMedGoogle Scholar
  18. 18.
    Derbyshire, K. M., and Grindley, N. D. (1996) Cis preference of the IS903 transposase is mediated by a combination of transposase instability and inefficient translation, Mol Microbiol 21, 1261–1272.PubMedGoogle Scholar
  19. 19.
    Ichikawa, H., Ikeda, K., Amemura, J., and Ohtsubo, E. (1990) Two domains in the terminal inverted-repeat sequence of transposon Tn3, Gene 86, 11–17.PubMedGoogle Scholar
  20. 20.
    Maekawa, T., Amemura-Maekawa, J., and Ohtsubo, E. (1993) DNA binding domains in Tn3 transposase, Mol Gen Genet 236, 267–274.PubMedGoogle Scholar
  21. 21.
    Weinert, T. A., Schaus, N. A., and Grindley, N. D. F. (1983) Insertion-Sequence Duplication in Transpositional Recombination, Science 222, 755–765.Google Scholar
  22. 22.
    Turlan, C., and Chandler, M. (1995) IS1-Mediated Intramolecular Rearrangements – Formation of Excised Transposon Circles and Replicative Deletions, Embo Journal 14, 5410–5421.PubMedGoogle Scholar
  23. 23.
    Chandler, M., and Mahillon, J. (2002) Insertion Sequences revisited, In Mobile DNA II (Craig, N. L., Craigie, R., Gellert, M. & Lambowitz, A. M, Ed.), ASM, Washington, DC.Google Scholar
  24. 24.
    Reimmann, C., Moore, R., Little, S., Savioz, A., Willetts, N. S., and Haas, D. (1989) Genetic-Structure, Function and Regulation of the Transposable Element Is21, Molecular & General Genetics 215, 416–424.Google Scholar
  25. 25.
    Derbyshire, K. M., Hwang, L., and Grindley, N. D. F. (1987) Genetic-Analysis of the Interaction of the Insertion-Sequence Is903 Transposase with Its Terminal Inverted Repeats, Proceedings of the National Academy of Sciences of the United States of America 84, 8049–8053.PubMedGoogle Scholar
  26. 26.
    Derbyshire, K. M., Kramer, M., and Grindley, N. D. (1990) Role of instability in the cis action of the insertion sequence IS903 transposase, Proc Natl Acad Sci U S A 87, 4048–4052.PubMedGoogle Scholar
  27. 27.
    Huisman, O., Errada, P. R., Signon, L., and Kleckner, N. (1989) Mutational analysis of IS10’s outside end, EMBO J 8, 2101–2109.PubMedGoogle Scholar
  28. 28.
    Johnson, R. C., and Reznikoff, W. S. (1983) DNA-Sequences at the Ends of Transposon Tn5 Required for Transposition, Nature 304, 280–282.PubMedGoogle Scholar
  29. 29.
    Zerbib, D., Prentki, P., Gamas, P., Freund, E., Galas, D. J., and Chandler, M. (1990) Functional organization of the ends of IS1: specific binding site for an IS 1-encoded protein, Mol Microbiol 4, 1477–1486.PubMedGoogle Scholar
  30. 30.
    Finnegan, D. J. (1989) Eukaryotic transposable elements and genome evolution, Trends Genet 5, 103–107.PubMedGoogle Scholar
  31. 31.
    Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J. L., Capy, P., Chalhoub, B., Flavell, A., Leroy, P., Morgante, M., Panaud, O., Paux, E., SanMiguel, P., and Schulman, A. H. (2007) A unified classification system for eukaryotic transposable elements, Nat Rev Genet 8, 973–982.PubMedGoogle Scholar
  32. 32.
    Han, J. S., and Boeke, J. D. (2005) LINE-1 retrotransposons: modulators of quantity and quality of mammalian gene expression? Bioessays 27, 775–784.PubMedGoogle Scholar
  33. 33.
    Kumar, A., and Bennetzen, J. L. (1999) Plant retrotransposons, Annu Rev Genet 33, 479–532.PubMedGoogle Scholar
  34. 34.
    Sabot, F., and Schulman, A. H. (2006) Parasitism and the retrotransposon life cycle in plants: a hitchhiker’s guide to the genome, Heredity 97, 381–388.PubMedGoogle Scholar
  35. 35.
    Voytas, D. F., and Boeke, J. D. (2002) Ty1 and Ty5 of Saccharomyces cerevisiae, In Mobile DNA II (Craig, N. L., Craigie, R., Gellert, M. & Lambowitz, A. M, Ed.), ASM, Washington, DC.Google Scholar
  36. 36.
    Kazazian, H. H., Jr. (2004) Mobile elements: drivers of genome evolution, Science 303, 1626–1632.PubMedGoogle Scholar
  37. 37.
    Malik, H. S., Henikoff, S., and Eickbush, T. H. (2000) Poised for contagion: evolutionary origins of the infectious abilities of invertebrate retroviruses, Genome Res 10, 1307–1318.PubMedGoogle Scholar
  38. 38.
    Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J. et al. (2001) Initial sequencing and analysis of the human genome, Nature 409, 860–921.Google Scholar
  39. 39.
    Leib-Mosch, C., Haltmeier, M., Werner, T., Geigl, E. M., Brack-Werner, R., Francke, U., Erfle, V., and Hehlmann, R. (1993) Genomic distribution and transcription of solitary HERV-K LTRs, Genomics 18, 261–269.PubMedGoogle Scholar
  40. 40.
    Wicker, T., Stein, N., Albar, L., Feuillet, C., Schlagenhauf, E., and Keller, B. (2001) Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution, Plant J 26, 307–316.PubMedGoogle Scholar
  41. 41.
    Vicient, C. M., Kalendar, R., Anamthawat-Jonsson, K., and Schulman, A. H. (1999) Structure, functionality, and evolution of the BARE-1 retrotransposon of barley, Genetica 107, 53–63.PubMedGoogle Scholar
  42. 42.
    SanMiguel, P., Gaut, B. S., Tikhonov, A., Nakajima, Y., and Bennetzen, J. L. (1998) The paleontology of intergene retrotransposons of maize, Nat Genet 20, 43–45.PubMedGoogle Scholar
  43. 43.
    Peterson, D. G., Schulze, S. R., Sciara, E. B., Lee, S. A., Bowers, J. E., Nagel, A., Jiang, N., Tibbitts, D. C., Wessler, S. R., and Paterson, A. H. (2002) Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery, Genome Res 12, 795–807.Google Scholar
  44. 44.
    Zuker, C., and Lodish, H. F. (1981) Repetitive DNA sequences cotranscribed with developmentally regulated Dictyostelium discoideum mRNAs, Proc Natl Acad Sci U S A 78, 5386–5390.PubMedGoogle Scholar
  45. 45.
    Goodwin, T. J., and Poulter, R. T. (2001) The DIRS1 group of retrotransposons, Mol Biol Evol 18, 2067–2082.PubMedGoogle Scholar
  46. 46.
    Piednoel, M., and Bonnivard, E. (2009) DIRS1-like retrotransposons are widely distributed among Decapoda and are particularly present in hydrothermal vent organisms, BMC Evol Biol 9, 86.PubMedGoogle Scholar
  47. 47.
    Evgen’ev, M. B., and Arkhipova, I. R. (2005) Penelope-like elements – a new class of retroelements: distribution, function and possible evolutionary significance, Cytogenet Genome Res 110, 510–521.PubMedGoogle Scholar
  48. 48.
    Arkhipova, I. R. (2006) Distribution and phylogeny of Penelope-like elements in eukaryotes, Syst Biol 55, 875–885.PubMedGoogle Scholar
  49. 49.
    Martin, S. L., Cruceanu, M., Branciforte, D., Wai-Lun Li, P., Kwok, S. C., Hodges, R. S., and Williams, M. C. (2005) LINE-1 retrotransposition requires the nucleic acid chaperone activity of the ORF1 protein, J Mol Biol 348, 549–561.PubMedGoogle Scholar
  50. 50.
    Martin, S. L. (2010) Nucleic acid chaperone properties of ORF1p from the non-LTR retrotransposon, LINE-1, RNA Biol 7, 706–711.PubMedGoogle Scholar
  51. 51.
    Kapitonov, V. V., and Jurka, J. (2003) Molecular paleontology of transposable elements in the Drosophila melanogaster genome, Proc Natl Acad Sci U S A 100, 6569–6574.PubMedGoogle Scholar
  52. 52.
    Kajikawa, M., and Okada, N. (2002) LINEs mobilize SINEs in the eel through a shared 3′ sequence, Cell 111, 433–444.PubMedGoogle Scholar
  53. 53.
    Houck, C. M., Rinehart, F. P., and Schmid, C. W. (1979) Ubiquitous Family of Repeated DNA Sequences in the Human Genome, Journal of Molecular Biology 132, 289–306.PubMedGoogle Scholar
  54. 54.
    Jurka, J., Zietkiewicz, E., and Labuda, D. (1995) Ubiquitous Mammalian-Wide Interspersed Repeats (Mirs) Are Molecular Fossils from the Mesozoic Era, Nucleic Acids Research 23, 170–175.PubMedGoogle Scholar
  55. 55.
    Ostertag, E. M., Goodier, J. L., Zhang, Y., and Kazazian, H. H., Jr. (2003) SVA elements are nonautonomous retrotransposons that cause disease in humans, Am J Hum Genet 73, 1444–1451.PubMedGoogle Scholar
  56. 56.
    Wang, H., Xing, J., Grover, D., Hedges, D. J., and Han, K. (2005) SVA elements: a hominid-specific retroposon family. J Mol Biol 354, 994–1007.PubMedGoogle Scholar
  57. 57.
    Xing, J., Wang, H., Belancio, V. P., Cordaux, R., Deininger, P. L., and Batzer, M. A. (2006) From the cover: eukaryotic transposable elements and genome evolution special feature: emergence of primate genes by retrotransposon-mediated sequence transduction, Proc Natl Acad Sci USA 103, 17608–17613.PubMedGoogle Scholar
  58. 58.
    Vanin, E. F. (1985) Processed pseudogenes: characteristics and evolution, Annu Rev Genet 19, 253–272.PubMedGoogle Scholar
  59. 59.
    Maestre, J., Tchenio, T., Dhellin, O., and Heidmann, T. (1995) mRNA retroposition in human cells: processed pseudogene formation, EMBO J 14, 6333–6338.PubMedGoogle Scholar
  60. 60.
    Esnault, C., Maestre, J., and Heidmann, T. (2000) Human LINE retrotransposons generate processed pseudogenes, Nat Genet 24, 363–367.PubMedGoogle Scholar
  61. 61.
    Sakharkar, M. K., Kangueane, P., Petrov, D. A., Kolaskar, A. S., and Subbiah, S. (2002) SEGE: a database on ‘intronless/single exonic’ genes from eukaryotes, Bioinformatics 18, 1266–1267.PubMedGoogle Scholar
  62. 62.
    Zhang, Z., Harrison, P., and Gerstein, M. (2002) Identification and analysis of over 2000 ribosomal protein pseudogenes in the human genome, Genome Res 12, 1466–1482.PubMedGoogle Scholar
  63. 63.
    Torrents, D., Suyama, M., Zdobnov, E., and Bork, P. (2003) A genome-wide survey of human pseudogenes, Genome Res 13, 2559–2567.PubMedGoogle Scholar
  64. 64.
    Szcześniak, M. W., Ciomborowska, J., Nowak, W., Rogozin, I. B., and Makałowska, I. (2011) Primate and rodent specific intron gains and the origin of retrogenes with splice variants, Mol Biol Evol 28, 33–38.PubMedGoogle Scholar
  65. 65.
    Goodwin, T. J., Butler, M. I., and Poulter, R. T. (2003) Cryptons: a group of tyrosine-recombinase-encoding DNA transposons from pathogenic fungi, Microbiology 149, 3099–3109.PubMedGoogle Scholar
  66. 66.
    Bureau, T. E., and Wessler, S. R. (1994) Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants, Plant Cell 6, 907–916.PubMedGoogle Scholar
  67. 67.
    Feschotte, C., Swamy, L., and Wessler, S. R. (2003) Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with stowaway miniature inverted repeat transposable elements (MITEs), Genetics 163, 747–758.PubMedGoogle Scholar
  68. 68.
    Wicker, T., Robertson, J. S., Schulze, S. R., Feltus, F. A., Magrini, V., Morrison, J. A., Mardis, E. R., Wilson, R. K., Peterson, D. G., Paterson, A. H., and Ivarie, R. (2005) The repetitive landscape of the chicken genome, Genome Res 15, 126–136.PubMedGoogle Scholar
  69. 69.
    Kapitonov, V. V., and Jurka, J. (2001) Rolling-circle transposons in eukaryotes, Proc Natl Acad Sci U S A 98, 8714–8719.PubMedGoogle Scholar
  70. 70.
    Hood, M. E. (2005) Repetitive DNA in the automictic fungus Microbotryum violaceum, Genetica 124, 1–10.PubMedGoogle Scholar
  71. 71.
    Pritham, E. J., and Feschotte, C. (2007) Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus, Proc Natl Acad Sci U S A 104, 1895–1900.PubMedGoogle Scholar
  72. 72.
    Pritham, E. J., Putliwala, T., and Feschotte, C. (2007) Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses, Gene 390, 3–17.PubMedGoogle Scholar
  73. 73.
    Kapitonov, V. V., and Jurka, J. (2006) Self-synthesizing DNA transposons in eukaryotes, Proc Natl Acad Sci U S A 103, 4540–4545.PubMedGoogle Scholar
  74. 74.
    Kurtz, S., Choudhuri, J. V., Ohlebusch, E., Schleiermacher, C., Stoye, J., and Giegerich, R. (2001) REPuter: the manifold applications of repeat analysis on a genomic scale, Nucleic Acids Research 29, 4633–4642.PubMedGoogle Scholar
  75. 75.
    Kurtz, S., and Schleiermacher, C. (1999) REPuter: fast computation of maximal repeats in complete genomes, Bioinformatics 15, 426–427.PubMedGoogle Scholar
  76. 76.
    Delcher, A. L., Kasif, S., Fleischmann, R. D., Peterson, J., White, O., and Salzberg, S. L. (1999) Alignment of whole genomes, Nucleic Acids Research 27, 2369–2376.PubMedGoogle Scholar
  77. 77.
    Delcher, A. L., Phillippy, A., Carlton, J., and Salzberg, S. L. (2002) Fast algorithms for large-scale genome alignment and comparison, Nucleic Acids Research 30, 2478–2483.PubMedGoogle Scholar
  78. 78.
    Li, R. Q., Ye, J., Li, S. G., Wang, J., Han, Y. J., Ye, C., Wang, J., Yang, H. M., Yu, J., Wong, G. K. S., and Wang, J. (2005) ReAS: Recovery of ancestral sequences for transposable elements from the unassembled reads of a whole genome shotgun, Plos Comput Biol 1, 313–321.Google Scholar
  79. 79.
    Price, A. L., Jones, N. C., and Pevzner, P. A. (2005) De novo identification of repeat families in large genomes, Bioinformatics 21, I351-I358.PubMedGoogle Scholar
  80. 80.
    Kurtz, S., Narechania, A., Stein, J. C., and Ware, D. (2008) A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes, BMC Genomics 9, 517.PubMedGoogle Scholar
  81. 81.
    Lefebvre, A., Lecroq, T., Dauchel, H., and Alexandre, J. (2003) FORRepeats: detects repeats on entire chromosomes and between genomes, Bioinformatics 19, 319–326.PubMedGoogle Scholar
  82. 82.
    Agrawal, P., and States, D. (1994) The Repeat Pattern Toolkit (RPT): analyzing the structure and evolution of the C. elegans genome, Proc Int Conf Intell Syst Mol Biol 2, 9.Google Scholar
  83. 83.
    Bao, Z. R., and Eddy, S. R. (2002) Automated de novo identification of repeat sequence families in sequenced genomes, Genome Research 12, 1269–1276.PubMedGoogle Scholar
  84. 84.
    Edgar, R. C. (2007) PILER-CR: Fast and accurate identification of CRISPR repeats, BMC Bioinformatics 8, 18.PubMedGoogle Scholar
  85. 85.
    Edgar, R. C., and Myers, E. W. (2005) PILER: identification and classification of genomic repeats, Bioinformatics 21, I152-I158.PubMedGoogle Scholar
  86. 86.
    Quesneville, H., Bergman, C. M., Andrieu, O., Autard, D., Nouaud, D., Ashburner, M., and Anxolabehere, D. (2005) Combined evidence annotation of transposable elements in genome sequences, Plos Comput Biol 1, 166–175.PubMedGoogle Scholar
  87. 87.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic Local Alignment Search Tool, Journal of Molecular Biology 215, 403–410.PubMedGoogle Scholar
  88. 88.
    Rasmussen, K., Stoye, J., and Myers, E. (2005) Efficient q-gram filters for finding all e-matches over a given length, In RECOMB.Google Scholar
  89. 89.
    Sharma, D., Issac, B., Raghava, G. P. S., and Ramaswamy, R. (2004) Spectral Repeat Finder (SRF): identification of repetitive sequences using Fourier transformation, Bioinformatics 20, 1405–1412.PubMedGoogle Scholar
  90. 90.
    Abrusan, G., Grundmann, N., DeMester, L., and Makalowski, W. (2009) TEclass – a tool for automated classification of unknown eukaryotic transposable elements, Bioinformatics 25, 1329–1330.PubMedGoogle Scholar
  91. 91.
    Jurka, J., Klonowski, P., Dagman, V., and Pelton, P. (1996) Censor – A program for identification and elimination of repetitive elements from DNA sequences, Computers & Chemistry 20, 119–121.Google Scholar
  92. 92.
    Jurka, J. (2000) Repbase Update – a database and an electronic journal of repetitive elements, Trends in Genetics 16, 418–420.PubMedGoogle Scholar
  93. 93.
    Jurka, J., Kapitonov, V. V., Pavlicek, A., Klonowski, P., Kohany, O., and Walichiewicz, J. (2005) Repbase update, a database of eukaryotic repetitive elements, Cytogenetic and Genome Research 110, 462–467.PubMedGoogle Scholar
  94. 94.
    Kohany, O., Gentles, A. J., Hankus, L., and Jurka, J. (2006) Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor, BMC Bioinformatics 7, 474.PubMedGoogle Scholar
  95. 95.
    Ouyang, S., and Buell, C. R. (2004) The TIGR Plant Repeat Databases: a collective resource for the identification of repetitive sequences in plants, Nucleic Acids Research 32, D360-D363.PubMedGoogle Scholar
  96. 96.
    Wicker, T., Matthews, D. E., and Keller, B. (2002) TREP: a database for Triticeae repetitive elements, Trends Plant Sci 7, 561–562.Google Scholar
  97. 97.
    McCarthy, E. M., and McDonald, J. F. (2003) LTR_STRUC: a novel search and identification program for LTR retrotransposons, Bioinformatics 19, 362–367.PubMedGoogle Scholar
  98. 98.
    Kalyanaraman, A., and Aluru, S. (2005) Efficient algorithms and software for detection of full-length LTR retrotransposons, Proc IEEE Comput Syst Bioinform Conf, 56–64.Google Scholar
  99. 99.
    Kalyanaraman, A., and Aluru, S. (2006) Efficient algorithms and software for detection of full-length LTR retrotransposons, J Bioinform Comput Biol 4, 197–216.PubMedGoogle Scholar
  100. 100.
    Rho, M., Choi, J. H., Kim, S., Lynch, M., and Tang, H. (2007) De novo identification of LTR retrotransposons in eukaryotic genomes, Bmc Genomics 8, 90.PubMedGoogle Scholar
  101. 101.
    Xu, Z., and Wang, H. (2007) LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons, Nucleic Acids Res 35, W265–268.PubMedGoogle Scholar
  102. 102.
    Ellinghaus, D., Kurtz, S., and Willhoeft, U. (2008) LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons, BMC Bioinformatics 9, 18.PubMedGoogle Scholar
  103. 103.
    Lerat, E. (2010) Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs, Heredity 104, 520–533.PubMedGoogle Scholar
  104. 104.
    Tu, Z. (2001) Eight novel families of miniature inverted repeat transposable elements in the African malaria mosquito, Anopheles gambiae, Proc Natl Acad Sci U S A 98, 1699–1704.Google Scholar
  105. 105.
    Chen, Y., Zhou, F., Li, G., and Xu, Y. (2009) MUST: a system for identification of miniature inverted-repeat transposable elements and applications to Anabaena variabilis and Haloquadratum walsbyi, Gene 436, 1–7.PubMedGoogle Scholar
  106. 106.
    Du, C., Caronna, J., He, L., and Dooner, H. K. (2008) Computational prediction and molecular confirmation of Helitron transposons in the maize genome, Bmc Genomics 9, 51.PubMedGoogle Scholar
  107. 107.
    Yang, L., and Bennetzen, J. L. (2009) Structure-based discovery and description of plant and animal Helitrons, Proc Natl Acad Sci U S A 106, 12832–12837.PubMedGoogle Scholar
  108. 108.
    Feschotte, C., Keswani, U., Ranganathan, N., Guibotsy, M. L., and Levine, D. (2009) Exploring Repetitive DNA Landscapes Using REPCLASS, a Tool That Automates the Classification of Transposable Elements in Eukaryotic Genomes, Genome Biol Evol 1, 205–220.PubMedGoogle Scholar
  109. 109.
    Lowe, T. M., and Eddy, S. R. (1997) tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence, Nucleic Acids Research 25, 955–964.PubMedGoogle Scholar
  110. 110.
    Flutre, T., Duprat, E., Feuillet, C., and Quesneville, H. (2011) Considering Transposable Element Diversification in De Novo Annotation Approaches, Plos One 6, e16526.PubMedGoogle Scholar
  111. 111.
    Fiston-Lavier, A. S., Carrigan, M., Petrov, D. A., and Gonzalez, J. (2011) T-lex: a program for fast and accurate assessment of transposable element presence using next-generation sequencing data, Nucleic Acids Res 39, e36.PubMedGoogle Scholar
  112. 112.
    Li, H., Ruan, J., and Durbin, R. (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores, Genome Research 18, 1851–1858.PubMedGoogle Scholar
  113. 113.
    Rumble, S. M., Lacroute, P., Dalca, A. V., Fiume, M., Sidow, A., and Brudno, M. (2009) SHRiMP: Accurate Mapping of Short Color-space Reads, Plos Comput Biol 5, e1000386.PubMedGoogle Scholar
  114. 114.
    Hormozdiari, F., Alkan, C., Eichler, E. E., and Sahinalp, S. C. (2009) Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes, Genome Research 19, 1270–1278.PubMedGoogle Scholar
  115. 115.
    Hormozdiari, F., Hajirasouliha, I., Dao, P., Hach, F., Yorukoglu, D., Alkan, C., Eichler, E. E., and Sahinalp, S. C. (2010) Next-generation VariationHunter: combinatorial algorithms for transposon insertion discovery, Bioinformatics 26, i350-i357.PubMedGoogle Scholar
  116. 116.
    Churakov, G., Grundmann, N., Kuritzin, A., Brosius, J., Makalowski, W., and Schmitz, J. (2010) A novel web-based TinT application and the chronology of the Primate Alu retroposon activity, BMC Evol Biol 10, 376.PubMedGoogle Scholar
  117. 117.
    Kriegs, J. O., Matzke, A., Churakov, G., Kuritzin, A., Mayr, G., Brosius, J., and Schmitz, J. (2007) Waves of genomic hitchhikers shed light on the evolution of gamebirds (Aves: Galliformes), BMC Evol Biol 7, 190.PubMedGoogle Scholar
  118. 118.
    Nilsson, M. A., Churakov, G., Sommer, M., Tran, N. V., Zemann, A., Brosius, J., and Schmitz, J. (2010) Tracking marsupial evolution using archaic genomic retroposon insertions, PLoS Biol 8, e1000436.PubMedGoogle Scholar
  119. 119.
    Kriegs, J. O., Zemann, A., Churakov, G., Matzke, A., Ohme, M., Zischler, H., Brosius, J., Kryger, U., and Schmitz, J. (2010) Retroposon insertions provide insights into deep lagomorph evolution, Mol Biol Evol 27, 2678–2681.PubMedGoogle Scholar
  120. 120.
    Siguier, P., Perochon, J., Lestrade, L., Mahillon, J., and Chandler, M. (2006) ISfinder: the reference centre for bacterial insertion sequences, Nucleic Acids Res 34, D32–36.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Wojciech Makałowski
    • 1
    Email author
  • Amit Pande
    • 1
  • Valer Gotea
    • 2
  • Izabela Makałowska
    • 3
  1. 1.Institute of BioinformaticsUniversity of MuensterMuensterGermany
  2. 2.National Human Genome Research Institute, National Institutes of HealthRockvilleUSA
  3. 3.Laboratory of BioinformaticsAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations