Isodielectric Separation and Analysis of Cells

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 853)

Abstract

Measuring the electrical properties of a cell provides a fast and accessible means of identifying or characterizing cells whose biological state differs from the population as a whole. This chapter describes a microfluidic method for characterizing the electrical properties of cells based upon their convergence to equilibrium in an electrical conductivity gradient. The method, called isodielectric separation, uses the dielectrophoretic force induced on polarizable objects in spatially nonuniform electric fields to deflect cells to the point in the conductivity gradient where their polarization charge vanishes. This equilibrium position encodes the cell’s electrical properties and can be used to identify cells that are electrically distinct from a background population, to determine the extent of this difference, and to physically isolate them for further study.

Key words

Electrical separation Dielectrophoresis Cell separation Electrical analysis Microfluidics 

References

  1. 1.
    Rosenbluth MJ, Lam WA, Fletcher DA (2008) Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry. Lab Chip 8(7): 1062–70PubMedCrossRefGoogle Scholar
  2. 2.
    Thevoz P et al (2010) Acoustophoretic synchronization of mammalian cells in microchannels. Anal Chem 82(7): 3094–8PubMedCrossRefGoogle Scholar
  3. 3.
    Becker FF et al (1995) Separation of human breast cancer cells from blood by differential dielectric affinity. Proc Natl Acad Sci USA 92(3): 860–4PubMedCrossRefGoogle Scholar
  4. 4.
    Chowdhury F et al (2009) Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat Mater 9(1): 82–8PubMedCrossRefGoogle Scholar
  5. 5.
    Cross SE et al (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2(12): 780–3PubMedCrossRefGoogle Scholar
  6. 6.
    Dustin ML, Cooper JA (2000) The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nat Immunol 1(1): 23–9PubMedCrossRefGoogle Scholar
  7. 7.
    Flanagan LA et al (2008) Unique dielectric properties distinguish stem cells and their differentiated progeny. Stem Cells 26(3): 656–65PubMedCrossRefGoogle Scholar
  8. 8.
    Pethig R et al (2002) Dielectrophoretic studies of the activation of human T lymphocytes using a newly developed cell profiling system. Electrophoresis 23(13): 2057–63PubMedCrossRefGoogle Scholar
  9. 9.
    Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Biomater, 3(4): 413–38PubMedCrossRefGoogle Scholar
  10. 10.
    Gawad S et al (2007) Impedance spectroscopy using maximum length sequences: application to single cell analysis. Rev Sci Instrum, 78(5): 054301PubMedCrossRefGoogle Scholar
  11. 11.
    Gawad S, Schild L, Renaud PH (2001) Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab Chip 1(1): 76–82PubMedCrossRefGoogle Scholar
  12. 12.
    Holmes D et al (2009) Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry. Lab Chip, 9(20): 2881–9PubMedCrossRefGoogle Scholar
  13. 13.
    Pohl HA, Crane JS (1971) Dielectrophoresis of cells. Biophys J, 11(9): 11–27CrossRefGoogle Scholar
  14. 14.
    Vahey MD, Voldman J (2008) An equilibrium method for continuous-flow cell sorting using dielectrophoresis. Anal Chem 80(9): 3135–43PubMedCrossRefGoogle Scholar
  15. 15.
    Vahey MD, Voldman J (2009) High-throughput cell and particle characterization using isodielectric separation. Anal Chem 81(7): p. 2446–55PubMedCrossRefGoogle Scholar
  16. 16.
    Desai SP, Freeman DM, Voldman J (2009) Plastic masters-rigid templates for soft lithography. Lab Chip 9(11): 1631–7PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations