Advertisement

Gene Synthesis pp 235-247 | Cite as

Design-A-Gene with GeneDesign

  • Sarah M. Richardson
  • Steffi Liu
  • Jef D. Boeke
  • Joel S. Bader
Part of the Methods in Molecular Biology book series (MIMB, volume 852)

Abstract

The manual design of synthetic genes is a tedious and error-prone process—even for very short genes—and it becomes completely infeasible when multiple synthetic genes are needed. GeneDesign is a set of modules that automate batch nucleotide manipulation. Here, we explain the installation, configuration, and use of GeneDesign as part of a synthetic design workflow.

Key words

Synthetic biology Computer-assisted GeneDesign Codon optimization Synthetic genes Synthetic biology software 

References

  1. 1.
    Richardson SM, Wheelan SJ, Yarrington RM and Boeke JD (2006) GeneDesign: rapid, automated design of multikilobase synthetic genes. Genome Res 16:550–556.PubMedCrossRefGoogle Scholar
  2. 2.
    Dymond JS, Scheifele LZ, Richardson SM, Lee P, Chandrasegaran S, Bader JS and Boeke JD (2009) Teaching synthetic biology, bioinformatics and engineering to undergraduates: the interdisciplinary build-a-genome course. Genetics 181:13–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Sharp PM, Tuohy TM and Mosurski KR (1986) Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res 14:5125–5143.PubMedCrossRefGoogle Scholar
  4. 4.
    Sharp PM, Cowe E, Higgins DG, Shields DC, Wolfe KH and Wright F (1988) Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharo­myces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-­species diversity. Nucleic Acids Res 16:8207–8211.PubMedCrossRefGoogle Scholar
  5. 5.
    Stenico M, Lloyd AT and Sharp PM (1994) Codon usage in Caenorhabditis elegans: delineation of translational selection and mutational biases. Nucleic Acids Res 22:2437–46.PubMedCrossRefGoogle Scholar
  6. 6.
  7. 7.
  8. 8.
  9. 9.
    Chacon S (2009) Pro Git. Apress Publishers, ISBN 978–1430218333.Google Scholar
  10. 10.
    Roberts RJ, Vincze T, Posfai J and Macelis D (2010) Rebase- a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 38:D234–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Gibson DG (2009) Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res 37:6984–6990.PubMedCrossRefGoogle Scholar
  12. 12.
    Gibson DG, Young L, Chuang R, Venter JC, Hutchison CA and Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345.PubMedCrossRefGoogle Scholar
  13. 13.
    Bitinaite J, Rubino M, Varma KH, Schildkraut I, Vaisvila R and Vaiskunaite R (2007) User friendly DNA engineering and cloning method by uracil excision. Nucleic Acids Res 35:1992–2002.PubMedCrossRefGoogle Scholar
  14. 14.
    Rychlik W, Spencer WJ and Rhoads RE (1990) Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Res 18:6409–6412.PubMedCrossRefGoogle Scholar
  15. 15.
    Sugimoto N, Nakano S, Yoneyama M and Honda K. (1996) Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes. Nucleic Acids Res 24:4501–4505.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Sceince+Business Media, LLC 2012

Authors and Affiliations

  • Sarah M. Richardson
    • 1
  • Steffi Liu
    • 2
  • Jef D. Boeke
    • 3
  • Joel S. Bader
    • 4
    • 5
  1. 1.High Throughput Biology CenterJohns Hopkins University School of Public HealthBaltimoreUSA
  2. 2.Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreUSA
  3. 3.Department of Molecular Biology and Genetics, High Throughput Biology CenterJohns Hopkins University School of MedicineBaltimoreUSA
  4. 4.High Throughput Biology CenterJohns Hopkins University School of MedicineBaltimoreUSA
  5. 5.Whiting School of EngineeringJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations