Advertisement

Gene Synthesis pp 133-150 | Cite as

Assembling Large DNA Segments in Yeast

  • Héloïse Muller
  • Narayana Annaluru
  • Joy Wu Schwerzmann
  • Sarah M. Richardson
  • Jessica S. Dymond
  • Eric M. Cooper
  • Joel S. Bader
  • Jef D. Boeke
  • Srinivasan Chandrasegaran
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 852)

Abstract

As described in a different chapter in this volume, the uracil-specific excision reaction (USER) fusion method can be used to assemble multiple small DNA fragments (∼0.75-kb size) into larger 3-kb DNA segments both in vitro and in vivo (in Escherichia coli). However, in order to assemble an entire synthetic yeast genome (Sc2.0 project), we need to be able to assemble these 3-kb pieces into larger DNA segments or chromosome-sized fragments. This assembly into larger DNA segments is carried out in vivo, using homologous recombination in yeast. We have successfully used this approach to assemble a 40-kb chromosome piece in the yeast Saccharomyces cerevisiae. A lithium acetate (LiOAc) protocol using equimolar amount of overlapping smaller fragments was employed to transform yeast. In this chapter, we describe the assembly of 3-kb fragments with an overlap of one building block (∼750 base pairs) into a 40-kb DNA piece.

Key words

Synthetic yeast USER fusion DNA assembly Large DNA fragments 

Notes

Acknowledgments

This work was supported by grants from National Science Foundation (MCB0718846) to JDB, JSB, and SC; from Microsoft to JSB and JDB; and from National Institutes of Health (GM077291) to SC. HM was a recipient of a fellowship from the Fondation pour la Recherche Medicale (FRM).

References

  1. 1.
    Dymond, JS, Scheifele, L., Richardson, S, Lee, P, Chandrasegaran, S, Bader, JS, Boeke, JD (2009) Teaching synthetic biology, bioinformatics and engineering to undergraduates: the interdisciplinary Build-a-Genome course. Genetics 18:1321.Google Scholar
  2. 2.
    Cooper E, Book chapter 20. THE BUILD A GENOME CLASS.Google Scholar
  3. 3.
    Chandrasegaran S, Book chapter 7. USER FUSION.Google Scholar
  4. 4.
    Gibson, DG, Benders, GA, Andrews-Pfannkoch, C, Denisova, EA, Baden-Tillson, H, Zaveri, J, Stockwell, TB, Brownley, A, Thomas, DW, Algire, MA, Merryman, C, Young, L, Noskov, VN, Glass, JI, Venter, JC, Hutchison, CA 3rd, Smith, HO (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319:121520.PubMedCrossRefGoogle Scholar
  5. 5.
    Gibson, DG, Benders, GA, Axelrod, KC, Zaveri, J, Algire, MA, Moodie, M, Montague, MG, Venter, JC, Smith, HO, Hutchison, CA 3rd (2008) One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci USA 105:204049.PubMedCrossRefGoogle Scholar
  6. 6.
    Gibson D, Book chapter 14. SYNTHESIS AND TRANSPLANTION OF BACTERIAL GENOMES.Google Scholar
  7. 7.
    Richardson, SM, Wheelan, SJ, Yarrington, RM, Boeke, JD (2006) GeneDesign: rapid, automated design of multikilobase synthetic genes. Genome Res 16:5506.PubMedCrossRefGoogle Scholar
  8. 8.
    Richardson, SM, Nunley, PW, Yarrington, RM, Boeke, JD, Bader, JS (2010) GeneDesign 3.0 is an updated synthetic biology toolkit. Nucleic Acids Res 38:26036.PubMedCrossRefGoogle Scholar
  9. 9.
    Richardson S, Book chapter 18 GENE DESIGN.Google Scholar
  10. 10.
    Gietz, RD, Schiestl, RH, Willems, AR, Woods, RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:35560.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Sceince+Business Media, LLC 2012

Authors and Affiliations

  • Héloïse Muller
    • 1
  • Narayana Annaluru
    • 1
  • Joy Wu Schwerzmann
    • 1
  • Sarah M. Richardson
    • 2
  • Jessica S. Dymond
    • 3
  • Eric M. Cooper
    • 3
  • Joel S. Bader
    • 3
    • 4
  • Jef D. Boeke
    • 5
  • Srinivasan Chandrasegaran
    • 1
  1. 1.Department of Environmental Health SciencesJohns Hopkins University School of Public HealthBaltimoreUSA
  2. 2.High Throughput Biology CenterJohns Hopkins University School of Public HealthBaltimoreUSA
  3. 3.High Throughput Biology CenterJohns Hopkins University School of MedicineBaltimoreUSA
  4. 4.Whiting School of EngineeringJohns Hopkins UniversityBaltimoreUSA
  5. 5.Department of Molecular Biology and Genetics, High Throughput Biology CenterJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations