Use of Northern Blotting for Specific Detection of Small RNA Molecules in Transgenic Plants

Part of the Methods in Molecular Biology book series (MIMB, volume 847)


Small RNAs (20–24 nucleotides long and nonprotein coding) have been increasingly investigated. They are responsible for phenomena described as RNA interference (RNAi), cosuppression, gene silencing, or quelling. Major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biosynthesis. MiRNAs control the expression of cognate target genes by binding to reverse complementary sequences, resulting in cleavage or translational inhibition of the target RNA. SiRNAs have similar structure, function, and biogenesis as miRNAs; siRNAs derive from long double-stranded RNA of transgenes, endogenous repeat sequences, or transposons. Understanding these fundamental processes requires the sensitive and specific detection of small RNA species. In this report, we present a simple Northern blot protocol for small RNAs in transgenic plants.

Key words

Small RNA miRNA siRNA Northern Blotting Transgenic plants 


  1. 1.
    Khraiwesh, B., Arif, M. A., Seumel, G. I., Ossowski, S., Weigel, D., Reski, R. and Frank, W. (2010) Transcriptional control of gene expression by microRNAs. Cell 140, 111–122.PubMedCrossRefGoogle Scholar
  2. 2.
    Fire, A., Xu, S., Montgomery, M. K., Kostas, S.A., Driver, S. E. and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.PubMedCrossRefGoogle Scholar
  3. 3.
    Lee, R.C., Feinbaum, R. L. and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854.PubMedCrossRefGoogle Scholar
  4. 4.
    Tomari, Y. and Zamore, P. D. (2005) Perspective: machines for RNAi. Genes Dev. 19, 517–529.Google Scholar
  5. 5.
    Chapman, E. J. and Carrington, J. C. (2007) Specialization and evolution of endogenous small RNA pathways. Nat. Rev. Genet 8, 884–896.PubMedCrossRefGoogle Scholar
  6. 6.
    Baulcombe, D. (2004) RNA silencing in plants. Nature 431, 356–363.PubMedCrossRefGoogle Scholar
  7. 7.
    Hamilton, A. J. and Baulcombe, D. C. (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952.PubMedCrossRefGoogle Scholar
  8. 8.
    de Carvalho, F., Gheysen, G., Kushnir, S., Van Montagu, M., Inze, D. and Castresana, C. (1992) Suppression of β-1,3-glucanase transgene expression in homozygous plants. EMBO J. 11, 2595–2602.PubMedGoogle Scholar
  9. 9.
    Napoli, C., Lemieux, C. and Jorgensen, R. (1990) Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-Suppression of homologous genes in trans. Plant Cell 2, 279–289.PubMedCrossRefGoogle Scholar
  10. 10.
    Romano, N. and Macino, G. (1992) Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol. Microbiol 6, 3343–3353.PubMedCrossRefGoogle Scholar
  11. 11.
    Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.PubMedCrossRefGoogle Scholar
  12. 12.
    Kurihara, Y. and Watanabe, Y. (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc. Natl. Acad. Sci. USA 101, 12753–12758.PubMedCrossRefGoogle Scholar
  13. 13.
    Jones-Rhoades, M. W., Bartel, D. P. and Bartel, B. (2006) MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant Biol. 57, 19–53.PubMedCrossRefGoogle Scholar
  14. 14.
    Axtell, M. J., Snyder, J. A. and Bartel, D. P. (2007) Common functions for diverse small RNAs of land plants. Plant Cell 19, 1750–1769.PubMedCrossRefGoogle Scholar
  15. 15.
    Fattash, I., Voss, B., Reski, R., Hess, W.R. and Frank, W. (2007) Evidence for the rapid expansion of microRNA-mediated regulation in early land plant evolution. BMC Plant Biol. 7, 13.PubMedCrossRefGoogle Scholar
  16. 16.
    Khraiwesh, B., Ossowski, S., Weigel, D., Reski, R. and Frank, W. (2008) Specific gene silencing by artificial MicroRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. Plant Physiol. 148, 684–693.PubMedCrossRefGoogle Scholar
  17. 17.
    Aravin, A. A., Lagos-Quintana, M., Yalcin, A., Zavolan, M., Marks, D., Snyder, B., Gaasterland, T., Meyer, J. and Tuschl, T. (2003) The small RNA profile during Drosophila melanogaster development. Dev. Cell 5, 337–350.PubMedCrossRefGoogle Scholar
  18. 18.
    Ossowski, S., Schwab, R. and Weigel, D. (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J. 53, 674–690.PubMedCrossRefGoogle Scholar
  19. 19.
    Allen, E., Xie, Z., Gustafson, A. M. and Carrington, J. C. (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121, 207–221.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Plant Systems BiologyFlanders Institute for Biotechnology (VIB)FlandersBelgium
  2. 2.Department of Plant Biotechnology and GeneticsGhent UniversityGentBelgium

Personalised recommendations