High Frequency of Single-Copy T-DNA Transformants Produced After Floral Dip in CRE-Expressing Arabidopsis Plants

  • Annelies De Paepe
  • Sylvie De Buck
  • Jonah Nolf
  • Ann DepickerEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 847)


Transgenic plants that harbor a single copy of the introduced transgene are preferable to those with multiple transgene copies because multiple T-DNA copies correlate with expression variability and susceptibility to silencing. Especially after the commonly used floral-dip Agrobacterium-mediated transformation method, the frequency of single-copy transformants is low. The CRE/loxP recombinase-based strategy to resolve complex T-DNA loci has proven to be successful to efficiently obtain single-copy T-DNA transformants by directly transforming loxP-containing T-DNA vectors in CRE-expressing Arabidopsis thaliana plants. This chapter describes in detail how to transform three available loxP-containing T-DNA vectors into CRE-producing Arabidopsis C24 plants and subsequently how to analyze the transgenic plants for the T-DNA locus structure.

Key words

CRE/loxP recombinase Single-copy T-DNA Arabidopsis Floral-dip transformation T-DNA inversion 



The authors thank Martine De Cock for the help in preparing the manuscript. This work was supported by grants from the 6th Framework Program of the European Union “GENINTEG” (LSHG-CT2003-503303) and the European Union BIOTECH program (QLRT-2000-00078), with additional cofinancing from the Flemish Community and the Research Foundation Flanders (grant no. G021106).


  1. 1.
    Gelvin, S. B. (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol. Mol. Biol. Rev. 67, 16–37.PubMedCrossRefGoogle Scholar
  2. 2.
    Banta, L. M., and Montenegro, M. (2008) Agrobacterium and plant biotechnology in. Agrobacterium, From Biology to Biotechnology (Tzfira, T. and Citovsky, V. eds.), Springer, New York, pp. 73–148.Google Scholar
  3. 3.
    Pitzschke, A., and Hirt, H. (2010) New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. EMBO J. 29, 1021–1032.PubMedCrossRefGoogle Scholar
  4. 4.
    Clough, S. J., and Bent, A. F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743.PubMedCrossRefGoogle Scholar
  5. 5.
    De Buck, S., Podevin, N., Nolf, J., Jacobs, A., and Depicker, A. (2009) The T-DNA integration pattern in Arabidopsis transformants is highly determined by the transformed target cell. Plant J. 60, 134–145.PubMedCrossRefGoogle Scholar
  6. 6.
    De Buck, S., Windels, P., De Loose, M., and Depicker, A. (2004) Single-copy T-DNAs integrated at different positions in the Arabidopsis genome display uniform and comparable β-glucuronidase accumulation levels. Cell. Mol. Life Sci. 61, 2632–2645.PubMedCrossRefGoogle Scholar
  7. 7.
    Schubert, D., Lechtenberg, B., Forsbach, A., Gils, M., Bahadur, S., and Schmidt, R. (2004) Silencing of Arabidopsis T-DNA transformants: the predominant role of gene-specific RNA sensing mechanism versus position effects. Plant Cell 16, 2561–2572.PubMedCrossRefGoogle Scholar
  8. 8.
    De Buck, S., and Depicker, A. (2004) Gene expression and level of expression. in, Handbook of Plant Biotechnology, Vol. 1 (Christou, P. and Klee, H. eds.), John Wiley & Sons, Chichester, pp. 331–345.Google Scholar
  9. 9.
    Ow, D. W. (2002) Recombinase-directed plant transformation for the post-genomic era. Plant Mol. Biol. 48, 183–200.PubMedCrossRefGoogle Scholar
  10. 10.
    Verweire, D., Verleyen, K., De Buck, S., Claeys, M., and Angenon, G. (2007) Marker-free transgenic plants through genetically programmed auto-excision. Plant Physiol. 145, 1220–1231.PubMedCrossRefGoogle Scholar
  11. 11.
    Gidoni, D., Srivastava, V., and Carmi, N. (2008) Site-specific excisional recombination strategies for elimination of undesirable transgenes from crop plants. In Vitro Cell. Dev. Biol. Plant 44, 457–467.CrossRefGoogle Scholar
  12. 12.
    Gilbertson, L. (2003) Cre-lox recombination: Creative tools for plant biotechnology. Trends Biotechnol. 21, 550–555.PubMedCrossRefGoogle Scholar
  13. 13.
    De Buck, S., Peck, I., De Wilde, C., Marjanac, G., Nolf, J., De Paepe, A., and Depicker, A. (2007) Generation of single-copy T-DNA transformants in Arabidopsis by the CRE/loxP recombination-mediated resolution system. Plant Physiol. 145, 1171–1182.PubMedCrossRefGoogle Scholar
  14. 14.
    De Paepe, A., De Buck, S., Hoorelbeke, K., Nolf, J., Peck, I., and Depicker, A. (2009) High frequency of single-copy T-DNA transformants by floral dip in CRE-expressing Arabidopsis plants. Plant J. 59, 517–527.PubMedCrossRefGoogle Scholar
  15. 15.
    Marjanac, G., De Paepe, A., Peck, I., Jacobs, A., De Buck, S., and Depicker, A. (2008) Evaluation of CRE-mediated excision approaches in Arabidopsis thaliana. Transgenic Res. 17, 239–250.PubMedCrossRefGoogle Scholar
  16. 16.
    Valvekens, D., Van Montagu, M., and Van Lijsebettens, M. (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc. Natl. Acad. Sci. USA 85, 5536–5540.PubMedCrossRefGoogle Scholar
  17. 17.
    De Buck, S., De Wilde, C., Van Montagu, M., and Depicker, A. (2000) Determination of the T-DNA transfer and the T-DNA integration frequencies upon cocultivation of Arabidopsis thaliana root explants. Mol. Plant–Microbe Interact. 13, 658–665.PubMedCrossRefGoogle Scholar
  18. 18.
    Koncz, C., and Schell, J. (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 204, 383–396.CrossRefGoogle Scholar
  19. 19.
    McClelland, M., Nelson, M., and Raschke, E. (1994) Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res. 22, 3640–3659.PubMedCrossRefGoogle Scholar
  20. 20.
    Verdaguer, B., de Kochko, A., Beachy, R. N., and Fauquet, C. (1996) Isolation and expression in transgenic tobacco and rice plants of the cassava vein mosaic virus (CVMV) promoter. Plant Mol. Biol. 31, 1129–1139.PubMedCrossRefGoogle Scholar
  21. 21.
    Dafhnis-Calas, F., Xu, Z., Haines, S., Malla, S. K., Smith, M. C. M., and Brown, W. R. A. (2005) Iterative in vivo assembly of large and complex transgenes by combining the activities of φC31 integrase and Cre recombinase. Nucleic Acids Res. 33, e189.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Annelies De Paepe
    • 1
  • Sylvie De Buck
    • 1
  • Jonah Nolf
    • 1
  • Ann Depicker
    • 1
    Email author
  1. 1.Department of Plant Systems Biology, VIB, Department of Biotechnology and BioinformaticsGhent UniversityGhentBelgium

Personalised recommendations