Skip to main content

Agrobacterium-Mediated Transformation of Sorghum bicolor Using Immature Embryos

Part of the Methods in Molecular Biology book series (MIMB,volume 847)

Abstract

Successful efforts describing in vitro culturing, regeneration, and transformation of grain sorghum were reported, using particle bombardment, as early as 1993, and with Agrobacterium tumefaciens in 2000. Reported transformation efficiencies via Agrobacterium routinely range from 1 to 2%. Recently, such efficiencies via Agrobacterium in several plant species were improved with the use of heat and centrifugation treatments of explants prior to infection. Here, we describe the successful use of heat pretreatment of immature embryos (IEs) prior to Agrobacterium inoculation to increase routine transformation frequencies of a single genotype, P898012, to greater than 7%. This reproducible frequency was calculated as numbers of independently transformed IEs, confirmed by PCR, western, and DNA hybridization analysis, that produced fertile transgenic plants, divided by total numbers of infected IEs.

Key words

  • Agrobacterium tumefaciens
  • GFP
  • Heat treatment
  • Immature embryos
  • Phosphomannose isomerase
  • Sorghum
  • Transformation

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-61779-558-9_10
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-1-61779-558-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Cai T, Daly, B., Butler, L. (1987) Callus induction and plant regeneration from shoot portions of mature embryos of high tannin sorghum. Plant Cell Tiss. Org. Cult. 9, 245–252.

    CrossRef  Google Scholar 

  2. Cai T, Butler, L. (1990) Plant regeneration from embryogenic callus initiated from ­immature inflorescences of several high-tannin sorghums. Plant Cell Tiss. Org. Cult. 20, 101–110.

    CrossRef  Google Scholar 

  3. Casas AM, Kononowicz, A.K., Zehr, U.B., Tomes, D.T., Axtell, J.D., Butler, L.G., Bressan, R.A., Hasegawa, P.M. (1993) Transgenic sorghum plants via microprojectile bombardment. Proc. Natl. Acad. Sci. USA 90, 11212–11216.

    CrossRef  CAS  Google Scholar 

  4. Casas AM, Kononowicz, A.K., Haan, T.G., Zhang, L., Tomes, D.T., Bressan, R.A., Hasegawa, P.M. (1997) Transgenic sorghum plants obtained after microprojectile bombardment of immature inflorescences. In Vitro Cell. Dev. Biol-Plant. 33, 92–100.

    CrossRef  Google Scholar 

  5. Emani C, Sunilkumar, G., Rathore, K.S. (2002) Transgene silencing and reactivation in sorghum. Plant Sci. 162, 181–192.

    CrossRef  CAS  Google Scholar 

  6. Gao Z, Jayaraj, J., Muthukrishnan, S., Claflin, L., Liang, G.H. (2005a) Efficient genetic transformation of sorghum using a visual screening marker. Genome 48, 321–333.

    PubMed  CrossRef  CAS  Google Scholar 

  7. Gao Z, Xie, X., Ling, Y., Muthukrishnan, S., Liang, G.H. (2005b) Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system. Plant Biotechnol. J. 3, 591–599.

    PubMed  CrossRef  CAS  Google Scholar 

  8. Gurel S, Gurel, E., Kaur, R., Wong, J., Meng, L., Tan, H.-Q., Lemaux, P.G. (2009) Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Rep. 28, 429–444.

    PubMed  CrossRef  CAS  Google Scholar 

  9. Hagio T, Blowers, A.D., Earle, E.D. (1991) Stable transformation of sorghum cell cultures after bombardment with DNA-coated microprojectiles. Plant Cell Rep. 10, 260–264.

    CrossRef  CAS  Google Scholar 

  10. Howe A, Sato, S., Dweikat, I., Fromm, M., Clemente, T. (2006) Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep. 25, 784–791.

    PubMed  CrossRef  CAS  Google Scholar 

  11. Kaeppler HF, Pederson, JF (1997) Evaluation of 41 elite and exotic inbred sorghum genotypes for high quality callus production. Plant Cell Tiss. Org. Cult. 48, 71–75.

    CrossRef  Google Scholar 

  12. Masteller VJ, Holden, D.J. (1970) The growth of and organ formation from callus tissue of sorghum. Plant Physiol. 45, 362–364.

    PubMed  CrossRef  CAS  Google Scholar 

  13. Nguyen TV, Thu, T.T., Claeys, M., Angenon, G. (2007) Agrobacterium-mediated transformation of sorghum (Sorghum bicolor (L.) Moench) using an improved in vitro regeneration system. Plant Cell Tiss. Org. Cult. 91, 155–164.

    CrossRef  CAS  Google Scholar 

  14. Zhao ZY, Cai, T., Tagliani, L., Miller, M., Wang, N., Pang, H., Rudert, M., Schroeder, S., Hondred, D., Seltzer, J., Pierce, D. (2000) Agrobacterium-mediated sorghum transformation. Plant Mol. Biol. 44, 789–798.

    PubMed  CrossRef  CAS  Google Scholar 

  15. Zhu H, Muthukrishnan, S., Krishnaveni, S., Wilde, G., Jeoung, J.M., Liang, G.H.. (1998) Biolistic transformation of sorghum using a rice chitinase gene. J. Genet. Breed. 52, 243–252.

    CAS  Google Scholar 

  16. Carvalho CHS, Zehr, U.B., Gunaratna, N., Anderson, J., Kononowicz, H.H., Hodges, T.K., Axtell, J.D. (2004) Agrobacterium-mediated transformation of sorghum: factors that affect transformation efficiency. Genet. Mol. Biol. 27, 259–269.

    CrossRef  CAS  Google Scholar 

  17. Tadesse Y, Sagi, L., Swennen, R., Jacobs, M. (2003) Optimization of transformation conditions and production of transgenic sorghum (Sorghum bicolor) via microprojectile bombardment. Plant Cell Tiss. Org. Cult. 75, 1–18.

    CrossRef  CAS  Google Scholar 

  18. O’Kennedy MM, Grootboom, A., Shewry, P.R. (2006) Harnessing sorghum and millet biotechnology for food and health. J. Cereal Sci. 44, 224–235.

    CrossRef  Google Scholar 

  19. Zhao ZY. (2006) Sorghum (Sorghum bicolor L.), in Methods in Molecular Biology. Agrobacterium protocols 2/e, vol 1. (Wang K, Ed.), pp 233–244, Humana Press, Totowa.

    CrossRef  Google Scholar 

  20. Khanna H, Becker, D., Kleidon, J., Dale, J. (2004) Centrifugation-assisted Agrobacterium tumefaciens-mediated transformation (CAAT) of embryogenic cell suspensions of banana (Musa spp. Cavendish AAA and Lady finger Aab). Mol. Breed. 14, 239–252.

    CrossRef  CAS  Google Scholar 

  21. Hiei Y, Ishida, Y., Kasaoka, K., Komari, T. (2006) Improved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciens. Plant Cell Tiss. Org. Cult. 87, 233–243.

    CrossRef  Google Scholar 

  22. Chiu W, Hiwa, Y., Zeng, W., Hirano, T., Kobayashi, H., Sheen, J., Chiu, W.L. (1996) Engineered GFP as a vital reporter in plants. Curr. Biol. 6, 325–330.

    PubMed  CrossRef  CAS  Google Scholar 

  23. Mayo JW, Anderson, R.L. (1968) Pathway of L-Mannose Degradation in Aerobacter aerogenes. J. Biologi Chem. 243, 6330–6333.

    PubMed  CAS  Google Scholar 

  24. Hood EE, Helmer, G.D., Fraley, R.T., Chilton, M.D. (1986) The hypovirulence of Agrobac­terium tumefaciens A281 is encoded in the region of pTiBo542 outside the T-DNA. J. Bacteriology 168, 1291–1301.

    PubMed  CAS  Google Scholar 

  25. Hoekema A, Hirsch, P.R., Hooykaas, P.J.J., Schilperoot, R.A. (1983) A binary plant vector strategy based on separation of vir- and T regions of the Agrobacterium tumefaciens Ti-plasmid. Nature 303, 179–180.

    CrossRef  CAS  Google Scholar 

  26. Sato S, Clemente, T., Dweikat, I. (2004) Identification of an elite sorghum genotype with high in vitro performance capacity. In Vitro Cell. Dev. Biol-Plant 40, 57–60.

    Google Scholar 

  27. Paterson AH, Bowers, J.E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., Haberer, G., Hellsten, U., Mitros, T., Poliakov, A., Schmutz, J., Spannagl, M., Tang, H., Wang, X., Wicker, T., Bharti, A.K., Chapman, J., Feltus, F.A., Gowik, U., Grigoriev, I.V., Lyons, E., Maher, C.A., Martis, M., Narechania, A., Otillar, R.P., Penning, B.W., Salamov, A.A., Wang, Y., Zhang, L., Carpita, N.C., Freeling, M., Gingle, A.R., Hash, C.T., Keller, B., Klein, P., Kresovich, S., McCann, M.C., Ming, R., Peterson, D.G., Mehboob-ur-Rahman, Ware, D., Westhoff, P., Mayer, K.F.X., Messing, J., Rokhsar, D.S. (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457, 551–556.

    PubMed  CrossRef  CAS  Google Scholar 

  28. Pedersen JF, Toy, J.J. (1999) Registration of N246 and N247 Sorghum Germplasm R-Lines. Crop Sci. 39, 1263.

    Google Scholar 

  29. Fu D, Huang, B., Xiao, Y., Muthukrishnan, S., Liang, G.H. (2007) Overexpression of barley Hva1 gene in creeping bentgrass for improving drought tolerance. Plant Cell Rep. 26, 467–477.

    PubMed  CrossRef  CAS  Google Scholar 

  30. Hajdukiewicz P, Svab, Z., Maliga, P. (1994) The small, versatile pPZP family of Agrobac­terium binary vectors for plant transformation. Plant Mol. Biol. 25, 989–994.

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Joshua Wong for technical advice and support, Han-Qi Tan and Katrina Linden for their participation in the experimental aspects of the work, and Barbara Alonso for graphic and editing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peggy G. Lemaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gurel, S., Gurel, E., Miller, T.I., Lemaux, P.G. (2012). Agrobacterium-Mediated Transformation of Sorghum bicolor Using Immature Embryos. In: Dunwell, J., Wetten, A. (eds) Transgenic Plants. Methods in Molecular Biology, vol 847. Humana Press. https://doi.org/10.1007/978-1-61779-558-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-558-9_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-557-2

  • Online ISBN: 978-1-61779-558-9

  • eBook Packages: Springer Protocols