Histological Staining of Amyloid and Pre-amyloid Peptides and Proteins in Mouse Tissue

  • Hameetha B. Rajamohamedsait
  • Einar M. SigurdssonEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 849)


The increased availability of transgenic mouse models for studying human diseases has shifted the focus of many laboratories from in vitro to in vivo assays. Herein, methods are described to allow investigators to obtain well-preserved mouse tissue to be stained with the standard histological dyes for amyloid, Congo Red, and Thioflavin S. These sections can as well be used for immunohistological procedures that allow detection of tissue amyloid and pre-amyloid, such as those composed of the amyloid-β peptide, the tau protein, and the islet amyloid polypeptide.

Key words

Mouse Perfusion Brain Pancreas Fixation Histology Congo red Thioflavin S Immunohistochemistry Amyloid-β Plaques Tau Tangles Islet amyloid polypeptide 



This work was supported by NIHs grant AG20197, AG032611, and DK075494 and the Alzheimer’s Association. These protocols were in part adapted from methods obtained from Stanley A. Lorens and Debra Magnuson at Loyola University Chicago. We thank Drs. Fernando Goñi and Ayodeji Asuni for their comments on the original manuscript, which has now been substantially updated and expanded in this second edition of the book.


  1. 1.
    Kitamoto, T., Ogomori, K., Tateishi, J., and Prusiner, S. B. (1987) Formic acid pretreatment enhances immunostaining of cerebral and systemic amyloids. Lab Invest 57, 230–236.PubMedGoogle Scholar
  2. 2.
    Davies, L., Wolska, B., Hilbich, C., Multhaup, G., Martins, R., Simms, G., Beyreuther, K., and Masters, C. L. (1988) A4 amyloid protein deposition and the diagnosis of Alzheimer’s disease: prevalence in aged brains determined by immunocytochemistry compared with ­conventional neuropathologic techniques. Neurology 38, 1688–1693.PubMedGoogle Scholar
  3. 3.
    Gentleman, S. M., Bruton, C., Allsop, D., Lewis, S. J., Polak, J. M., and Roberts, G. W. (1989) A demonstration of the advantages of immunostaining in the quantification of amyloid plaque deposits. Histochemistry 92, 355–358.PubMedCrossRefGoogle Scholar
  4. 4.
    Lamy, C., Duyckaerts, C., Delaere, P., Payan, C., Fermanian, J., Poulain, V., and Hauw, J. J. (1989) Comparison of seven staining methods for senile plaques and neurofibrillary tangles in a prospective series of 15 elderly patients. Neuropathol. Appl. Neurobiol. 15, 563–578.PubMedCrossRefGoogle Scholar
  5. 5.
    Wisniewski, H. M., Wen, G. Y., and Kim, K. S. (1989) Comparison of four staining methods on the detection of neuritic plaques. Acta Neuropathol. (Berl) 78, 22–27.CrossRefGoogle Scholar
  6. 6.
    Vallet, P. G., Guntern, R., Hof, P. R., Golaz, J., Delacourte, A., Robakis, N. K., and Bouras, C. (1992) A comparative study of histological and immunohistochemical methods for neurofibrillary tangles and senile plaques in Alzheimer’s disease. Acta Neuropathol. (Berl) 83, 170–178.CrossRefGoogle Scholar
  7. 7.
    Raskin, L. S., Applegate, M. D., Price, D. L., Troncoso, J. C., and Hedreen, J. C. (1995) Comparison of new and traditional methods for detection of senile plaques in Alzheimer’s disease. J. Geriatr. Psychiatry Neurol. 8, 125–131.PubMedGoogle Scholar
  8. 8.
    Cullen, K. M., Halliday, G. M., Cartwright, H., and Kril, J. J. (1996) Improved selectivity and sensitivity in the visualization of neurofibrillary tangles, plaques and neuropil threads. Neurodegeneration. 5, 177–187.PubMedCrossRefGoogle Scholar
  9. 9.
    Shiurba, R. A., Spooner, E. T., Ishiguro, K., Takahashi, M., Yoshida, R., Wheelock, T. R., Imahori, K., Cataldo, A. M., and Nixon, R. A. (1998) Immunocytochemistry of formalin-fixed human brain tissues: microwave irradiation of free-floating sections. Brain Res. Brain Res. Protoc. 2, 109–119.PubMedCrossRefGoogle Scholar
  10. 10.
    Cummings, B. J., Mason, A. J., Kim, R. C., Sheu, P. C., and Anderson, A. J. (2002) Optimization of techniques for the maximal detection and quantification of Alzheimer’s-related neuropathology with digital imaging. Neurobiol. Aging 23, 161–170.PubMedCrossRefGoogle Scholar
  11. 11.
    Sigurdsson, E. M., Lorens, S. A., Hejna, M. J., Dong, X. W., and Lee, J. M. (1996) Local and distant histopathological effects of unilateral amyloid-β 25-35 injections into the amygdala of young F344 rats. Neurobiol. Aging 17, 893–901.PubMedCrossRefGoogle Scholar
  12. 12.
    Sigurdsson, E. M., Lee, J. M., Dong, X. W., Hejna, M. J., and Lorens, S. A. (1997) Bilateral injections of amyloid-β 25-35 into the amygdala of young Fischer rats: Behavioral, neurochemical, and time dependent histopathological effects. Neurobiol. Aging 18, 591–608.PubMedCrossRefGoogle Scholar
  13. 13.
    Sigurdsson, E. M., Scholtzova, H., Mehta, P. D., Frangione, B., and Wisniewski, T. (2001) Immunization with a non-toxic/non-fibrillar amyloid-β homologous peptide reduces Alzheimer’s disease associated pathology in transgenic mice. Am. J. Pathol. 159, 439–447.PubMedCrossRefGoogle Scholar
  14. 14.
    Asuni, A. A., Boutajangout, A., Quartermain, D., and Sigurdsson, E. M. (2007) Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J. Neurosci. 27, 9115–9129.PubMedCrossRefGoogle Scholar
  15. 15.
    Davies, P. Tau immunohistochemistry protocol: Mice. Accessed 25 March 2011.

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Hameetha B. Rajamohamedsait
    • 1
  • Einar M. Sigurdsson
    • 2
    Email author
  1. 1.Department of Physiology and NeuroscienceNew York University School of MedicineNew YorkUSA
  2. 2.Departments of Physiology and Neuroscience, and PsychiatryNew York University School of MedicineNew YorkUSA

Personalised recommendations