Ribozymes pp 159-184

Part of the Methods in Molecular Biology book series (MIMB, volume 848)

Crystallographic Analysis of Small Ribozymes and Riboswitches

  • Geoffrey M. Lippa
  • Joseph A. Liberman
  • Jermaine L. Jenkins
  • Jolanta Krucinska
  • Mohammad Salim
  • Joseph E. Wedekind
Protocol

Abstract

Ribozymes and riboswitches are RNA motifs that accelerate biological reactions and regulate gene expression in response to metabolite recognition, respectively. These RNA molecules gain functionality via complex folding that cannot be predicted a priori, and thus requires high-resolution three-dimensional structure determination to locate key functional attributes. Herein, we present an overview of the methods used to determine small RNA structures with an emphasis on RNA preparation, crystallization, and structure refinement. We draw upon examples from our own research in the analysis of the leadzyme ribozyme, the hairpin ribozyme, a class I preQ1 riboswitch, and variants of a larger class II preQ1 riboswitch. The methods presented provide a guide for comparable investigations of noncoding RNA molecules including a 48-solution, “first choice” RNA crystal screen compiled from our prior successes with commercially available screens.

Key words

RNA Riboswitches Ribozymes RNA synthesis Purification X-ray crystallography Crystal screen 

References

  1. 1.
    Wedekind, J. E. (2011) in Met. Ions Life Sci.: Structural and Catalytic Roles of Metal Ions in RNA, eds. A. Sigel, H. Sigel, R. Sigel, Royal Society of Chemistry, London, pp. 299–345.Google Scholar
  2. 2.
    Wedekind, J. E. and McKay, D. B. (2003) Crystal structure of the leadzyme at 1.8Å resolution: metal ion binding and the implications for catalytic mechanism and allo site ion regulation. Biochemistry 42, 9554–9563.PubMedCrossRefGoogle Scholar
  3. 3.
    Alam, S., Grum-Tokars, V., Krucinska, J., Kundracik, M. L. and Wedekind, J. E. (2005) Conformational heterogeneity at position U37 of an all-RNA hairpin ribozyme with implications for metal binding and the catalytic structure of the S-turn. Biochemistry 44, 14396–14408.PubMedCrossRefGoogle Scholar
  4. 4.
    Spitale, R. C., Torelli, A. T., Krucinska, J., Bandarian, V. and Wedekind, J. E. (2009) The structural basis for recognition of the PreQ0 metabolite by an unusually small riboswitch aptamer domain. J Biol Chem 284, 11012–11016.PubMedCrossRefGoogle Scholar
  5. 5.
    Griffiths-Jones, S., Moxon, S., Marshall, M., Khanna, A., Eddy, S. R. and Bateman, A. (2005) Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 33, D121–124.PubMedCrossRefGoogle Scholar
  6. 6.
    Ren, J., Rastegari, B., Condon, A. and Hoos, H. H. (2005) HotKnots: heuristic prediction of RNA secondary structures including pseudoknots. RNA 11, 1494–1504.PubMedCrossRefGoogle Scholar
  7. 7.
    Wedekind, J. E. and McKay, D. B. (2000) Purification, crystallization, and X-ray diffraction analysis of small ribozymes. Methods Enzymol. 317, 149–168.PubMedCrossRefGoogle Scholar
  8. 8.
    Golden, B. L., Gooding, A. R., Podell, E. R. and Cech, T. R. (1996) X-ray crystallography of large RNAs: heavy-atom derivatives by RNA engineering. RNA 2, 1295–1305.PubMedGoogle Scholar
  9. 9.
    Robertson, M. P. and Scott, W. G. (2008) A general method for phasing novel complex RNA crystal structures without heavy-atom derivatives. Acta Crystallogr D Biol Crystallogr D64, 738–744.PubMedCrossRefGoogle Scholar
  10. 10.
    Keel, A. Y., Rambo, R. P., Batey, R. T. and Kieft, J. S. (2007) A general strategy to solve the phase problem in RNA crystallography. Structure 15, 761–772.PubMedCrossRefGoogle Scholar
  11. 11.
    Beaucage, S. L. and Reese, C. B. (2009) Recent advances in the chemical synthesis of RNA. Curr Protoc Nucleic Acid Chem Chapter 2, Unit 2 16 11–31.Google Scholar
  12. 12.
    Torelli, A. T., Spitale, R. C., Krucinska, J. and Wedekind, J. E. (2008) Shared traits on the reaction coordinates of ribonuclease and an RNA enzyme. Biochem Biophys Res Commun 371, 154–158.PubMedCrossRefGoogle Scholar
  13. 13.
    Spitale, R. C., Volpini, R., Mungillo, M. V., Krucinska, J., Cristalli, G. and Wedekind, J. E. (2009) Single-atom imino substitutions at A9 and A10 reveal distinct effects on the fold and function of the hairpin ribozyme catalytic core. Biochemistry 48, 7777–7779.PubMedCrossRefGoogle Scholar
  14. 14.
    Sinha, N. D., Biernat, J., McManus, J. and Koster, H. (1984) Polymer support oligonucleotide synthesis XVIII: use of beta-cyanoethyl-N,N-dialkylamino-/N-morpholino phosphoramidite of deoxynucleosides for the synthesis of DNA fragments simplifying deprotection and isolation of the final product. Nucleic Acids Res 12, 4539–4557.PubMedCrossRefGoogle Scholar
  15. 15.
    Spitale, R. C. and Wedekind, J. E. (2009) Exploring ribozyme conformational changes with X-ray crystallography. Methods 49, 87–100.PubMedCrossRefGoogle Scholar
  16. 16.
    Hartsel, S. A., Kitchen, D. E., Scaringe, S. A. and Marshall, W. S. (2005) RNA oligonucleotide synthesis via 5’-silyl-2’-orthoester chemistry. Methods Mol Biol 288, 33–50.PubMedGoogle Scholar
  17. 17.
    Ferre-D’Amare, A. R., Zhou, K. and Doudna, J. A. (1998) A general module for RNA crystallization. J Mol Biol 279, 621–631.PubMedCrossRefGoogle Scholar
  18. 18.
    Sherlin, L. D., Bullock, T. L., Nissan, T. A., Perona, J. J., Lariviere, F. J., Uhlenbeck, O. C. and Scaringe, S. A. (2001) Chemical and enzymatic synthesis of tRNAs for high-throughput crystallization. RNA 7, 1671–1678.PubMedGoogle Scholar
  19. 19.
    Milligan, J. F. and Uhlenbeck, O. C. (1989) Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol 180, 51–62.PubMedCrossRefGoogle Scholar
  20. 20.
    Garman, E. F. and Doublie, S. (2003) Cryocooling of macromolecular crystals: optimization methods. Methods Enzymol 368, 188–216.PubMedCrossRefGoogle Scholar
  21. 21.
    Garman, E. F. and Owen, R. L. (2006) Cryocoo-ling and radiation damage in macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 62, 32–47.PubMedCrossRefGoogle Scholar
  22. 22.
    Arndt, U. W. and Wonacott, A. J., The Rotation method in crystallography: Data collection from macromolecular crystals, Elsevier/North-Holland, New York, 1977.Google Scholar
  23. 23.
    Otwinowski, Z. and Minor, W. (1997) Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods in Enzymology 276, 307–326.CrossRefGoogle Scholar
  24. 24.
    Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C. and Zwart, P. H. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213–221.PubMedCrossRefGoogle Scholar
  25. 25.
    Torelli, A. T., Krucinska, J. and Wedekind, J. E. (2007) A comparison of vanadate to a 2’-5’ linkage at the active site of a small ribozyme suggests a role for water in transition-state stabilization. RNA 13, 1052–1070.PubMedCrossRefGoogle Scholar
  26. 26.
    Emsley, P., Lohkamp, B., Scott, W. G. and Cowtan, K. (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66, 486–501.PubMedCrossRefGoogle Scholar
  27. 27.
    Chen, V. B., Arendall, W. B., III, Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S. and Richardson, D. C. (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66, 12–21.PubMedCrossRefGoogle Scholar
  28. 28.
    Kleywegt, G. J., Harris, M. R., Zou, J. Y., Taylor, T. C., Wahlby, A. and Jones, T. A. (2004) The Uppsala Electron-Density Server. Acta Crystallogr D Biol Crystallogr 60, 2240–2249.PubMedCrossRefGoogle Scholar
  29. 29.
    Ferre-D’Amare, A. R. and Doudna, J. A. (2000) Crystallization and structure determination of a hepatitis delta virus ribozyme: use of the RNA-binding protein U1A as a crystallization module. J Mol Biol 295, 541–556.PubMedCrossRefGoogle Scholar
  30. 30.
    Ferre-D’Amare, A. R. (2010) Use of the spliceosomal protein U1A to facilitate crystallization and structure determination of complex RNAs. Methods 52, 159–167.PubMedCrossRefGoogle Scholar
  31. 31.
    MacElrevey, C., Spitale, R. C., Krucinska, J. and Wedekind, J. E. (2007) A posteriori design of crystal contacts to improve the X-ray diffraction properties of a small RNA enzyme. Acta Crystallogr. D Biol. Crystallogr. 63, 812–825.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Geoffrey M. Lippa
    • 1
  • Joseph A. Liberman
    • 1
  • Jermaine L. Jenkins
    • 1
  • Jolanta Krucinska
    • 1
  • Mohammad Salim
    • 1
  • Joseph E. Wedekind
    • 1
  1. 1.Department of Biochemistry and BiophysicsUniversity of RochesterRochesterUSA

Personalised recommendations