Advertisement

Leucocytes pp 139-156 | Cite as

The Macrophage

  • Chris P. VerschoorEmail author
  • Alicja Puchta
  • Dawn M. E. Bowdish
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 844)

Abstract

Macrophages are a diverse phenotype of professional phagocytic cells derived from bone-marrow precursors and parent monocytes in the peripheral blood. They are essential for the maintenance and defence of host tissues, doing so by sensing and engulfing particulate matter and, when necessary, initiating a pro-inflammatory response. Playing such a vast number of roles in both health and disease, the activation phenotype of macrophages can vary greatly and is largely dependent on the surrounding microenvironment. These phenotypes can be mimicked in experimental macrophage models derived from monocytes and in conjunction with stimulatory factors, although given the complexity of in vivo tissue spaces these model cells are inherently imperfect. Furthermore, experimental observations generated in mice are not necessarily conserved in humans, which can hamper translational research.

The following chapter aims to provide an overview of how macrophages and their parent cell-type, monocytes, are classified, their development through the myeloid lineage, and finally, the general function of macrophages.

Key words

Monocytes Macrophages Origin Activation Differentiation Function 

Notes

Acknowledgements

The Bowdish lab is funded by the CIHR and the MG DeGroote Institute for Infectious Disease Research.

References

  1. 1.
    Dale, D.C., Boxer, L. Liles, W.C,. (2008) The phagocytes: neutrophils and monocytes, Blood, 112, 935–945.PubMedCrossRefGoogle Scholar
  2. 2.
    Robbins, C.S., Swirski, F.K. (2010) The multiple roles of monocyte subsets in steady state and inflammation, Cell Mol Life Sci, 67, 2685–2693.PubMedCrossRefGoogle Scholar
  3. 3.
    Sunderkotter, C., Nikolic, T., Dillon, M.J. et al. (2004) Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response, J Immunol 172, 4410–4417.PubMedGoogle Scholar
  4. 4.
    Hume, D.A. (2008) Differentiation and heterogeneity in the mononuclear phagocyte system, Mucosal Immunol 1, 432–441.PubMedCrossRefGoogle Scholar
  5. 5.
    Jutila, D.B., Kurk, S., Jutila, M.A. (1994) Differences in the expression of Ly-6C on neutrophils and monocytes following PI-PLC hydrolysis and cellular activation, Immunol Lett 41, 49–57.PubMedCrossRefGoogle Scholar
  6. 6.
    Hanninen, A., Maksimow, M., Alam, C., et al. (2011) Ly6C supports preferential homing of central memory CD8(+) T cells into lymph nodes, Eur J Immunol 41, 634–644.PubMedCrossRefGoogle Scholar
  7. 7.
    Ziegler-Heitbrock, L., Ancuta, P., Crowe, S., et al. (2010) Nomenclature of monocytes and dendritic cells in blood, Blood, 116, e74–e80.PubMedCrossRefGoogle Scholar
  8. 8.
    Egan, C.E., Sukhumavasi, W., Bierly, A.L. et al. (2008) Understanding the multiple functions of Gr-1(+) cell subpopulations during microbial infection, Immunol Res 40, 35–48.PubMedCrossRefGoogle Scholar
  9. 9.
    Medina-Echeverz, J., Fioravanti, J., Zabala, M., et al. (2011) Successful colon cancer eradication after chemoimmunotherapy is associated with profound phenotypic change of intratumoral myeloid cells, J Immunol 186, 807–815.PubMedCrossRefGoogle Scholar
  10. 10.
    Youn, J.I., Nagaraj, S., Collazo, M., et al. (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice, J Immunol 181, 5791–5802.PubMedGoogle Scholar
  11. 11.
    Palframan, R.T., Jung, S., Cheng, G., et al. (2001) Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues, J Exp Med 194, 1361–1373.PubMedCrossRefGoogle Scholar
  12. 12.
    Serbina, N.V., Pamer, E.G. (2006) Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2, Nat Immunol 7, 311–317.PubMedCrossRefGoogle Scholar
  13. 13.
    Auffray, C., Fogg, D., Garfa, M., et al. (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior, Science 317, 666–670.PubMedCrossRefGoogle Scholar
  14. 14.
    Jiang, Y., Beller, D.I., Frendl, G. et al. (1992) Monocyte chemoattractant protein-1 regulates adhesion molecule expression and cytokine production in human monocytes, J Immunol 148, 2423–2428.PubMedGoogle Scholar
  15. 15.
    Drevets, D.A., Dillon, M.J., Schawang, J.S., et al. (2004) The Ly-6Chigh monocyte subpopulation transports Listeria monocytogenes into the brain during systemic infection of mice, J Immunol 172, 4418–4424.PubMedGoogle Scholar
  16. 16.
    Swirski, F.K., Pittet, M.J., Kircher, M.F., et al. (2006) Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease, Proc Natl Acad Sci USA 103, 10340–10345.PubMedCrossRefGoogle Scholar
  17. 17.
    Serbina, N.V., Kuziel, W., Flavell, R., et al. (2003) Sequential MyD88-independent and -dependent activation of innate immune responses to intracellular bacterial infection, Immunity, 19, 891–901.PubMedCrossRefGoogle Scholar
  18. 18.
    Serbina, N.V., Jia, T., Hohl, T.M., et al. (2008) Monocyte-mediated defense against microbial pathogens, Annu Rev Immunol 26, 421–452.PubMedCrossRefGoogle Scholar
  19. 19.
    Strauss-Ayali, D., Conrad, S.M., Mosser, D.M. (2007) Monocyte subpopulations and their differentiation patterns during infection, J Leukoc Biol 82, 244–252.PubMedCrossRefGoogle Scholar
  20. 20.
    Geissmann, F., Jung, S., Littman, D.R. (2003) Blood monocytes consist of two principal subsets with distinct migratory properties, Immunity 19, 71–82.PubMedCrossRefGoogle Scholar
  21. 21.
    Cros, J., Cagnard, N., Woollard, K., et al. (2010) Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors, Immunity 33, 375–386.PubMedCrossRefGoogle Scholar
  22. 22.
    Auffray, C., Sieweke, M.H., Geissmann, F. (2009) Blood monocytes: development, heterogeneity, and relationship with dendritic cells, Annu Rev Immunol 27, 669–692.PubMedCrossRefGoogle Scholar
  23. 23.
    Fung, E., Esposito, L., Todd, J.A., et al. (2010) Multiplexed immunophenotyping of human antigen-presenting cells in whole blood by polychromatic flow cytometry, Nat Protoc 5, 357–370.PubMedCrossRefGoogle Scholar
  24. 24.
    Ingersoll, M.A., Spanbroek, R., Lottaz, C., et al. (2010) Comparison of gene expression profiles between human and mouse monocyte subsets, Blood 115, e10–e19.PubMedCrossRefGoogle Scholar
  25. 25.
    Skrzeczynska-Moncznik, J., Bzowska, M., Loseke, S., et al. (2008) Peripheral blood CD14high CD16+ monocytes are main producers of IL-10, Scand J Immunol 67, 152–159.PubMedCrossRefGoogle Scholar
  26. 26.
    Mikolajczyk, T.P., Skrzeczynska-Moncznik, J.E., Zarebski, M.A., et al. (2009) Interaction of human peripheral blood monocytes with apoptotic polymorphonuclear cells, Immunology 128, 103–113.PubMedCrossRefGoogle Scholar
  27. 27.
    Geissmann, F., Manz, M.G., Jung, S., et al. (2010) Development of monocytes, macrophages, and dendritic cells, Science 327, 656–661.PubMedCrossRefGoogle Scholar
  28. 28.
    Comeau, M.R., Van der Vuurst de Vries, A.R., Maliszewski, C.R., et al. (2002) CD123bright plasmacytoid predendritic cells: progenitors undergoing cell fate conversion? J Immunol 169, 75–83.PubMedGoogle Scholar
  29. 29.
    Giebel, B., Punzel, M. (2008) Lineage development of hematopoietic stem and progenitor cells, Biol Chem 389, 813–824.PubMedCrossRefGoogle Scholar
  30. 30.
    Lagasse, E., Weissman, I.L. (1997) Enforced expression of Bcl-2 in monocytes rescues macrophages and partially reverses osteopetrosis in op/op mice, Cell 89, 1021–1031.PubMedCrossRefGoogle Scholar
  31. 31.
    Hume, D.A. (2010) Applications of myeloid-specific promoters in transgenic mice support in vivo imaging and functional genomics but do not support the concept of distinct macrophage and dendritic cell lineages or roles in immunity, J Leukoc Biol doi:  10.1189/jlb.0810472.
  32. 32.
    Combadiere, C., Potteaux, S., Rodero, M., et al. (2008) Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice, Circulation 117, 1649–1657.PubMedCrossRefGoogle Scholar
  33. 33.
    Baldridge, M.T., King, K.Y., Goodell, M.A. (2011) Inflammatory signals regulate hematopoietic stem cells, Trends Immunol doi:  10.1016/j.it.2010.12.003.
  34. 34.
    Varol, C., Landsman, L., Fogg, D.K., et al. (2007) Monocytes give rise to mucosal, but not splenic, conventional dendritic cells, J Exp Med 204, 171–180.PubMedCrossRefGoogle Scholar
  35. 35.
    Swirski, F.K., Nahrendorf, M., Etzrodt, M., et al. (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites, Science 325, 612–616.PubMedCrossRefGoogle Scholar
  36. 36.
    Tsou, C.L., Peters, W., Si, Y., et al. (2007) Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites, J Clin Invest 117, 902–909.PubMedCrossRefGoogle Scholar
  37. 37.
    Erwig, L.P., Henson, P.M. (2007) Immunological consequences of apoptotic cell phagocytosis, Am J Pathol 171, 2–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Mosser, D.M., Edwards, J.P. (2008) Exploring the full spectrum of macrophage activation, Nat Rev Immunol 8, 958–969.PubMedCrossRefGoogle Scholar
  39. 39.
    Benoit, M., Desnues, B., Mege, J.L. (2008) Macrophage polarization in bacterial infections, J Immunol 181, 3733–3739.PubMedGoogle Scholar
  40. 40.
    Dorger, M., Munzing, S., Allmeling, A.M., et al. (2001) Phenotypic and functional differences between rat alveolar, pleural, and peritoneal macrophages, Exp Lung Res 27, 65–76.PubMedCrossRefGoogle Scholar
  41. 41.
    Itoh, K., Udagawa, N., Kobayashi, K., et al. (2003) Lipopolysaccharide promotes the survival of osteoclasts via Toll-like receptor 4, but cytokine production of osteoclasts in response to lipopolysaccharide is different from that of macrophages, J Immunol 170, 3688–3695.PubMedGoogle Scholar
  42. 42.
    Meltzer, M.S. (1981) Macrophage activation for tumor cytotoxicity: characterization of priming and trigger signals during lymphokine activation, J Immunol 127, 179–183.PubMedGoogle Scholar
  43. 43.
    Pace, J.L., Russell, S.W., Torres, B.A., et al. (1983) Recombinant mouse gamma interferon induces the priming step in macrophage activation for tumor cell killing, J Immunol 130, 2011–2013.PubMedGoogle Scholar
  44. 44.
    Martinez, F.O., Helming, L. and Gordon, S. (2009) Alternative activation of macrophages: an immunologic functional perspective, Annu Rev Immunol 27, 451–483.PubMedCrossRefGoogle Scholar
  45. 45.
    Stein, M., Keshav, S., Harris, N., et al. (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation, J Exp Med 176, 287–292.PubMedCrossRefGoogle Scholar
  46. 46.
    Edwards, J.P., Zhang, X., Frauwirth, K.A., et al. (2006) Biochemical and functional characterization of three activated macrophage populations, J Leukoc Biol 80, 1298–1307.PubMedCrossRefGoogle Scholar
  47. 47.
    Youn, J.I., Gabrilovich, D.I. (2010) The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity, Eur J Immunol 40, 2969–2975.PubMedCrossRefGoogle Scholar
  48. 48.
    Newby, A.C., George, S.J., Ismail, Y., et al. (2009) Vulnerable atherosclerotic plaque metalloproteinases and foam cell phenotypes, Thromb Haemost 101, 1006–1011.PubMedGoogle Scholar
  49. 49.
    Swirski, F.K., Libby, P., Aikawa, E., et al. (2007) Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata, J Clin Invest 117, 195–205.PubMedCrossRefGoogle Scholar
  50. 50.
    Khallou-Laschet, J., Varthaman, A., Fornasa, G., et al. (2010) Macrophage plasticity in experimental atherosclerosis, PLoS One 5, e8852.PubMedCrossRefGoogle Scholar
  51. 51.
    Daigneault, M., Preston, J.A., Marriott, H.M., et al. (2010) The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages, PLoS One 5, e8668.PubMedCrossRefGoogle Scholar
  52. 52.
    MacMicking, J., Xie, Q.W. and Nathan, C. (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15, 323–350.PubMedCrossRefGoogle Scholar
  53. 53.
    Murray, P.J. and Wynn, T.A. (2011) Obstacles and opportunities for understanding macrophage polarization, J Leukoc Biol doi:  10.1189/jlb.0710409.
  54. 54.
    Randolph, G.J., Beaulieu, S., Lebecque, S., et al. (1998) Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking, Science 282, 480–483.PubMedCrossRefGoogle Scholar
  55. 55.
    Landsman, L., Varol, C., Jung, S. (2007) Distinct differentiation potential of blood monocyte subsets in the lung, J Immunol 178, 2000–2007.PubMedGoogle Scholar
  56. 56.
    Sawyer, R.T., Strausbauch, P.H., Volkman, A. (1982) Resident macrophage proliferation in mice depleted of blood monocytes by strontium-89, Lab Invest 46, 165–170.PubMedGoogle Scholar
  57. 57.
    Tarling, J.D., Lin, H.S., Hsu, S. (1987) Self-renewal of pulmonary alveolar macrophages: evidence from radiation chimera studies, J Leukoc Biol 42, 443–446.PubMedGoogle Scholar
  58. 58.
    Wijffels, J.F., de Rover, Z., Beelen, R.H., et al. (1994) Macrophage subpopulations in the mouse spleen renewed by local proliferation, Immunobiology 191, 52–64.PubMedCrossRefGoogle Scholar
  59. 59.
    Crofton, R.W., Diesselhoff-den Dulk, M.M., van Furth R. (1978) The origin, kinetics, and characteristics of the Kupffer cells in the normal steady state, J Exp Med 148, 1–17.PubMedCrossRefGoogle Scholar
  60. 60.
    Arnold, L., Henry, A., Poron, F., et al. (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis, J Exp Med 204, 1057–1069.PubMedCrossRefGoogle Scholar
  61. 61.
    Matute-Bello, G., Lee, J.S., Frevert, C.W., et al. (2004) Optimal timing to repopulation of resident alveolar macrophages with donor cells following total body irradiation and bone marrow transplantation in mice, J Immunol Methods 292, 25–34.PubMedCrossRefGoogle Scholar
  62. 62.
    Nahrendorf, M., Swirski, F.K., Aikawa, E., et al. (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions, J Exp Med 204, 3037–3047.PubMedCrossRefGoogle Scholar
  63. 63.
    Geissmann, F., Gordon, S., Hume, D.A., et al. (2010) Unravelling mononuclear phagocyte heterogeneity, Nat Rev Immunol 10, 453–460.PubMedCrossRefGoogle Scholar
  64. 64.
    Fairbairn, L., Kapetanovic, R., Sester, D.P., et al. (2011) The mononuclear phagocyte system of the pig as a model for understanding human innate immunity and disease, J Leukoc Biol doi:  10.1189/jlb.1110607.
  65. 65.
    Davies, J.Q., Gordon, S. (2005) Isolation and culture of human macrophages. In Basic cell culture protocols. 3rd ed edition. Edited by Helgason, C.D., Miller, C.L. and Totowa, N.J. Humana Press 105–116.Google Scholar
  66. 66.
    Hashimoto, S., Suzuki, T., Dong, H.Y., et al. (1999) Serial analysis of gene expression in human monocytes and macrophages, Blood, 94, 837–844.PubMedGoogle Scholar
  67. 67.
    Lee, B., Sharron, M., Montaner, L.J., et al. (1999) Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages, Proc Natl Acad Sci USA 96, 5215–5220.PubMedCrossRefGoogle Scholar
  68. 68.
    Matsuda, S., Akagawa, K., Honda, M., et al. (1995) Suppression of HIV replication in human monocyte-derived macrophages induced by granulocyte/macrophage colony-stimulating factor, AIDS Res Hum Retroviruses 11, 1031–1038.PubMedCrossRefGoogle Scholar
  69. 69.
    Kreutz, M., Krause, S.W., Hennemann, B., et al. (1992) Macrophage heterogeneity and differentiation: defined serum-free culture conditions induce different types of macrophages in vitro, Res Immunol 143, 107–115.PubMedCrossRefGoogle Scholar
  70. 70.
    Davies, J.Q., Gordon, S. (2005) Isolation and culture of murine macrophages, In Basic cell culture protocols. 3rd ed edition. Edited by Helgason, C.D., Miller, C.L. and Totowa, N.J., Humana Press 91–104.Google Scholar
  71. 71.
    Kondo, M., Weissman, I.L., Akashi, K. (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow, Cell 91, 661–672.PubMedCrossRefGoogle Scholar
  72. 72.
    Zhang, X., Goncalves, R., Mosser, D.M. (2008) The isolation and characterization of murine macrophages, Curr Protoc Immunol Unit 14.1. doi:  10.1002/0471142735.im1401s83.
  73. 73.
    Taylor, P.R., Martinez-Pomares, L., Stacey, M., et al. (2005) Macrophage receptors and immune recognition, Annu Rev Immunol 23, 901–944.PubMedCrossRefGoogle Scholar
  74. 74.
    Kumar, H., Kawai, T., Akira, S. (2011) Pathogen recognition by the innate immune system, Int Rev Immunol 30, 16–34.PubMedCrossRefGoogle Scholar
  75. 75.
    Trinchieri, G., Sher, A. (2007) Cooperation of Toll-like receptor signals in innate immune defence, Nat Rev Immunol 7, 179–190.PubMedCrossRefGoogle Scholar
  76. 76.
    Brown, G.D., Gordon, S. (2001) Immune recognition. A new receptor for beta-glucans, Nature 413, 36–37.Google Scholar
  77. 77.
    Knutson, K.L., Hmama, Z., Herrera-Velit, P., et al. (1998) Lipoarabinomannan of Mycobacterium tuberculosis promotes protein tyrosine dephosphorylation and inhibition of mitogen-activated protein kinase in human mononuclear phagocytes. Role of the Src homology 2 containing tyrosine phosphatase 1, J Biol Chem 273, 645–652.Google Scholar
  78. 78.
    Varin, A., Gordo, S. (2009) Alternative activation of macrophages: immune function and cellular biology, Immunobiology 214, 630–641.PubMedCrossRefGoogle Scholar
  79. 79.
    Lemke, G., Burstyn-Cohen, T. (2010) TAM receptors and the clearance of apoptotic cells, Ann N Y Acad Sci 1209, 23–29.PubMedCrossRefGoogle Scholar
  80. 80.
    Savill, J., Dransfield, I., Gregory, C., et al. (2002) A blast from the past: clearance of apoptotic cells regulates immune responses, Nat Rev Immunol 2, 965–975.PubMedCrossRefGoogle Scholar
  81. 81.
    Bottcher, A., Gaipl, U.S., Furnrohr, B.G., et al. (2006) Involvement of phosphatidylserine, alphavbeta3, CD14, CD36, and complement C1q in the phagocytosis of primary necrotic lymphocytes by macrophages, Arthritis Rheum 54, 927–938.PubMedCrossRefGoogle Scholar
  82. 82.
    Chen, X.W., Shen, Y., Sun, C.Y., et al. (2011) Anti-class A scavenger receptor autoantibodies from systemic lupus erythematosus patients impair phagocytic clearance of apoptotic cells by macrophages in vitro, Arthritis Res Ther 13, R9.PubMedCrossRefGoogle Scholar
  83. 83.
    Mantovani, A., Sica, A., Sozzani, S., et al. (2004) The chemokine system in diverse forms of macrophage activation and polarization, Trends Immunol 25, 677–686.PubMedCrossRefGoogle Scholar
  84. 84.
    O’Brien, J., Lyons, T., Monks, J., et al. (2010) Alternatively activated macrophages and collagen remodeling characterize the postpartum involuting mammary gland across species, Am J Pathol 176, 1241–1255.PubMedCrossRefGoogle Scholar
  85. 85.
    Rae, F., Woods, K., Sasmono, T., et al. (2007) Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r-EGFP transgene reporter, Dev Biol 308, 232–246.PubMedCrossRefGoogle Scholar
  86. 86.
    Wink, D.A., Hines, H.B., Cheng, R.Y., et al. (2011)Nitric oxide and redox mechanisms in the immune response, J Leukoc Biol doi:  10.1189/jlb.1010550.
  87. 87.
    Jensen, P.E. (2007) Recent advances in antigen processing and presentation, Nat Immunol 8, 1041–1048.PubMedCrossRefGoogle Scholar
  88. 88.
    Antoine, J.C., Prina, E., Courret, N., et al. (2004) Leishmania spp.: on the interactions they establish with antigen-presenting cells of their mammalian hosts, Adv Parasitol 58, 1–68.Google Scholar
  89. 89.
    Kamada, N., Hisamatsu, T., Honda, H., et al. (2009) Human CD14+ macrophages in intestinal lamina propria exhibit potent antigen-presenting ability, J Immunol 183, 1724–1731.PubMedCrossRefGoogle Scholar
  90. 90.
    Martinez, F.O., Gordon, S., Locati, M., et al. (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression, J Immunol 177, 7303–7311.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Chris P. Verschoor
    • 1
    Email author
  • Alicja Puchta
    • 1
  • Dawn M. E. Bowdish
    • 1
  1. 1.Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonCanada

Personalised recommendations