Setting Up an Ancient DNA Laboratory

  • Tara L. FultonEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 840)


Entering into the world of ancient DNA research is nontrivial. Because the DNA in most ancient specimens is degraded to some extent, the potential for contamination of ancient samples and DNA extracts with modern DNA is considerable. To minimize the risk associated with working with ancient DNA, experimental protocols specific to handling ancient specimens have been introduced. Here, I outline the challenges associated with working with ancient DNA and describe guidelines for setting up a new ancient DNA laboratory. I also discuss steps that can be taken at the sample collection and preparation stage to minimize the potential for contamination with exogenous sources of DNA.

Key words

Ancient DNA aDNA DNA damage Laboratory setup Contamination Sub-sampling Sample preparation Guidelines 


  1. 1.
    Higuchi R, Bowman B, Freiberger M et al (1984) DNA-sequences from the Quagga, an extinct member of the horse family. Nature 312:282–284PubMedCrossRefGoogle Scholar
  2. 2.
    Saiki RK, Scharf S, Faloona F et al (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle-cell anemia. Science 230:1350–1354PubMedCrossRefGoogle Scholar
  3. 3.
    Pääbo S, Higuchi RG, Wilson AC (1989) Ancient DNA and the polymerase chain-reaction—the emerging field of molecular archaeology. J Biol Chem 264:9709–9712PubMedGoogle Scholar
  4. 4.
    Green RE, Krause J, Briggs AW et al (2010) A draft sequence of the Neandertal genome. Science 328:710–722PubMedCrossRefGoogle Scholar
  5. 5.
    Edwards CJ, Bollongino R, Scheu A et al (2007) Mitochondrial DNA analysis shows a Near Eastern Neolithic origin for domestic cattle and no indication of domestication of European aurochs. Proc Biol Sci 274:1377–1385PubMedCrossRefGoogle Scholar
  6. 6.
    Larson G, Liu RR, Zhao XB et al (2010) Patterns of East Asian pig domestication, migration, and turnover revealed by modern and ancient DNA. Proc Natl Acad Sci U S A 107:7686–7691PubMedCrossRefGoogle Scholar
  7. 7.
    Leonard JA, Wayne RK, Wheeler J et al (2002) Ancient DNA evidence for Old World origin of New World dogs. Science 298:1613–1616PubMedCrossRefGoogle Scholar
  8. 8.
    Goloubinoff P, Pääbo S, Wilson AC (1993) Evolution of Maize inferred from sequence diversity of an Adh2 gene segment from archaeological specimens. Proc Natl Acad Sci U S A 90:1997–2001PubMedCrossRefGoogle Scholar
  9. 9.
    Stiller M, Baryshnikov G, Bocherens H et al (2010) Withering away-25,000 years of genetic decline preceded cave bear extinction. Mol Biol Evol 27:975–978PubMedCrossRefGoogle Scholar
  10. 10.
    Shapiro B, Drummond AJ, Rambaut A et al (2004) Rise and fall of the Beringian steppe bison. Science 306:1561–1565PubMedCrossRefGoogle Scholar
  11. 11.
    Campos PF, Willerslev E, Sher A et al (2010) Ancient DNA analyses exclude humans as the driving force behind late Pleistocene musk ox (Ovibos moschatus) population dynamics. Proc Natl Acad Sci U S A 107:5675–5680PubMedCrossRefGoogle Scholar
  12. 12.
    Leonard JA, Wayne RK, Cooper A (2000) Population genetics of ice age brown bears. Proc Natl Acad Sci U S A 97:1651–1654PubMedCrossRefGoogle Scholar
  13. 13.
    Pinsky ML, Newsome SD, Dickerson BR et al (2010) Dispersal provided resilience to range collapse in a marine mammal: insights from the past to inform conservation biology. Mol Ecol 19:2418–2429PubMedGoogle Scholar
  14. 14.
    Shapiro B, Sibthorpe D, Rambaut A et al (2002) Flight of the dodo. Science 295:1683PubMedCrossRefGoogle Scholar
  15. 15.
    Orlando L, Metcalf JL, Alberdi MT et al (2009) Revising the recent evolutionary history of equids using ancient DNA. Proc Natl Acad Sci U S A 106:21754–21759PubMedCrossRefGoogle Scholar
  16. 16.
    Krause J, Unger T, Nocon A et al (2008) Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene-Pliocene boundary. BMC Evol Biol 8:220PubMedCrossRefGoogle Scholar
  17. 17.
    Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715PubMedCrossRefGoogle Scholar
  18. 18.
    Pääbo S (1989) Ancient DNA—extraction, characterization, molecular-cloning, and enzymatic amplification. Proc Natl Acad Sci U S A 86:1939–1943PubMedCrossRefGoogle Scholar
  19. 19.
    Poinar HN, Schwarz C, Qi J et al (2006) Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 311:392–394PubMedCrossRefGoogle Scholar
  20. 20.
    Hoss M, Jaruga P, Zastawny TH et al (1996) DNA damage and DNA sequence retrieval from ancient tissues. Nucleic Acids Res 24:1304–1307PubMedCrossRefGoogle Scholar
  21. 21.
    Rohland N, Pollack JL, Nagel D et al (2005) The population history of extant and extinct hyenas. Mol Biol Evol 22:2435–2443PubMedCrossRefGoogle Scholar
  22. 22.
    Hofreiter M (2008) Long DNA sequences and large data sets: investigating the Quaternary via ancient DNA. Quat Sci Rev 27:2586–2592CrossRefGoogle Scholar
  23. 23.
    Lindahl T (1993) Recovery of antediluvian DNA. Nature 365:700PubMedCrossRefGoogle Scholar
  24. 24.
    Hofreiter M, Serre D, Poinar HN et al (2001) Ancient DNA. Nat Rev Genet 2:353–359PubMedCrossRefGoogle Scholar
  25. 25.
    Pääbo S, Poinar H, Serre D et al (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679PubMedCrossRefGoogle Scholar
  26. 26.
    Willerslev E, Cooper A (2005) Ancient DNA. Proc Biol Sci 272:3–16PubMedCrossRefGoogle Scholar
  27. 27.
    Leonard JA, Shanks O, Hofreiter M et al (2007) Animal DNA in PCR reagents plagues ancient DNA research. J Archaeol Sci 34:1361–1366CrossRefGoogle Scholar
  28. 28.
    Gilbert MTP, Bandelt HJ, Hofreiter M et al (2005) Assessing ancient DNA studies. Trends Ecol Evol 20:541–544PubMedCrossRefGoogle Scholar
  29. 29.
    Handt O, Hoss M, Krings M et al (1994) Ancient DNA—methodological challenges. Experientia 50:524–529PubMedCrossRefGoogle Scholar
  30. 30.
    Cooper A, Poinar HN (2000) Ancient DNA: do it right or not at all. Science 289:1139PubMedCrossRefGoogle Scholar
  31. 31.
    Poinar HN, Hoss M, Bada JL et al (1996) Amino acid racemization and the preservation of ancient DNA. Science 272:864–866PubMedCrossRefGoogle Scholar
  32. 32.
    Collins MJ, Penkman KE, Rohland N et al (2009) Is amino acid racemization a useful tool for screening for ancient DNA in bone? Proc Biol Sci 276:2971–2977PubMedCrossRefGoogle Scholar
  33. 33.
    Handt O, Krings M, Ward RH et al (1996) The retrieval of ancient human DNA sequences. Am J Hum Genet 59:368–376PubMedGoogle Scholar
  34. 34.
    Hebsgaard MB, Phillips MJ, Willerslev E (2005) Geologically ancient DNA: fact or artefact? Trends Microbiol 13:212–220PubMedCrossRefGoogle Scholar
  35. 35.
    Willerslev E, Hansen AJ, Poinar HN (2004) Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol Evol 19:141–147PubMedCrossRefGoogle Scholar
  36. 36.
    Griffiths AJF (2005) Introduction to genetic analysis, 8th edn. W.H. Freeman, New YorkGoogle Scholar
  37. 37.
    Kemp BM, Smith DG (2005) Use of bleach to eliminate contaminating DNA from the surface of bones and teeth. Forensic Sci Int 154:53–61PubMedCrossRefGoogle Scholar
  38. 38.
    Gilbert MTP, Hansen AJ, Willerslev E et al (2006) Insights into the processes behind the contamination of degraded human teeth and bone samples with exogenous sources of DNA. Int J Osteoarchaeol 16:156–164CrossRefGoogle Scholar
  39. 39.
    Sampietro ML, Gilbert MTP, Lao O et al (2006) Tracking down human contamination in ancient human teeth. Mol Biol Evol 23:1801–1807PubMedCrossRefGoogle Scholar
  40. 40.
    Salamon M, Tuross N, Arensburg B et al (2005) Relatively well preserved DNA is present in the crystal aggregates of fossil bones. Proc Natl Acad Sci U S A 102:13783–13788PubMedCrossRefGoogle Scholar
  41. 41.
    Gilbert MTP, Menez L, Janaway RC et al (2006) Resistance of degraded hair shafts to contaminant DNA. Forensic Sci Int 156:208–212PubMedCrossRefGoogle Scholar
  42. 42.
    Rasmussen M, Li YR, Lindgreen S et al (2010) Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463:757–762PubMedCrossRefGoogle Scholar
  43. 43.
    Hofreiter M, Jaenicke V, Serre D et al (2001) DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res 29:4793–4799PubMedCrossRefGoogle Scholar
  44. 44.
    Rohland N, Hofreiter M (2007) Comparison and optimization of ancient DNA extraction. Biotechniques 42:343–352PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of BiologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations