Copy Number Variation and Psychiatric Disease Risk

  • Rebecca J. Levy
  • Bin Xu
  • Joseph A. Gogos
  • Maria KarayiorgouEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 838)


Psychiatric disorders are multifactorial in nature with complex genetic architecture. A number of recent studies, building upon earlier findings of copy number variants (CNVs) at the 22q11.2 locus, suggest that rare CNVs represent an important component of genetic heterogeneity in the etiology of complex psychiatric diseases, such as schizophrenia. De novo CNVs are found with higher frequency among sporadic cases, whereas inherited CNVs are enriched among familial cases. Despite substantial progress, a number of challenges remain, such as pinpointing causative relationships between specific gene(s) affected by CNVs and disease phenotypes as well as distinguishing abnormal structural mutations from neutral polymorphisms and establishing a clear association between individual pathogenic CNV and disease phenotypes.

Key words

Schizophrenia Copy number variants 22q11.2 Microdeletion Rare allele 


  1. 1.
    Sullivan, P. F., Kendler, K. S., and Neale, M. C. (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies, Arch. Gen. Psychiatry. 60, 1187–1192.Google Scholar
  2. 2.
    Altshuler, D., Daly, M. J., and Lander, E. S. (2008) Genetic mapping in human disease, Science 322, 881–888.Google Scholar
  3. 3.
    Need, A. C. and Goldstein, D. B. (2009) Next generation disparities in human genomics: ­concerns and remedies, Trends Genet. 25, 489–494.Google Scholar
  4. 4.
    Sanders, A. R., Duan, J., Levinson, D. F., Shi, J., He, D., Hou, C., Burrell, G. J., Rice, J. P., Nertney, D. A., Olincy, A., Rozic, P., Vinogradov, S., Buccola, N. G., Mowry, B. J., Freedman, R., Amin, F., Black, D. W., Silverman, J. M., Byerley, W. F., Crowe, R. R., Cloninger, C. R., Martinez, M., and Gejman, P. V. (2008) No significant association of 14 candidate genes with schizophrenia in a large European ancestry sample: implications for psychiatric genetics, Am. J. Psychiatry 165, 497–506.Google Scholar
  5. 5.
    Ferreira, M. A., O’Donovan, M. C., Meng, Y. A., Jones, I. R., Ruderfer, D. M., Jones, L., Fan, J., Kirov, G., Perlis, R. H., Green, E. K., Smoller, J. W., Grozeva, D., Stone, J., Nikolov, I., Chambert, K., Hamshere, M. L., Nimgaonkar, V. L., Moskvina, V., Thase, M. E., Caesar, S., Sachs, G. S., Franklin, J., Gordon-Smith, K., Ardlie, K. G., Gabriel, S. B., Fraser, C., Blumenstiel, B., Defelice, M., Breen, G., Gill, M., Morris, D. W., Elkin, A., Muir, W. J., McGhee, K. A., Williamson, R., MacIntyre, D. J., MacLean, A. W., St, C. D., Robinson, M., Van, B. M., Pereira, A. C., Kandaswamy, R., McQuillin, A., Collier, D. A., Bass, N. J., Young, A. H., Lawrence, J., Ferrier, I. N., Anjorin, A., Farmer, A., Curtis, D., Scolnick, E. M., McGuffin, P., Daly, M. J., Corvin, A. P., Holmans, P. A., Blackwood, D. H., Gurling, H. M., Owen, M. J., Purcell, S. M., Sklar, P., and Craddock, N. (2008) Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder, Nat. Genet. 40, 1056–1058.Google Scholar
  6. 6.
    O’Donovan, M. C., Craddock, N., Norton, N., Williams, H., Peirce, T., Moskvina, V., Nikolov, I., Hamshere, M., Carroll, L., Georgieva, L., Dwyer, S., Holmans, P., Marchini, J. L., Spencer, C. C., Howie, B., Leung, H. T., Hartmann, A. M., Moller, H. J., Morris, D. W., Shi, Y., Feng, G., Hoffmann, P., Propping, P., Vasilescu, C., Maier, W., Rietschel, M., Zammit, S., Schumacher, J., Quinn, E. M., Schulze, T. G., Williams, N. M., Giegling, I., Iwata, N., Ikeda, M., Darvasi, A., Shifman, S., He, L., Duan, J., Sanders, A. R., Levinson, D. F., Gejman, P. V., Cichon, S., Nothen, M. M., Gill, M., Corvin, A., Rujescu, D., Kirov, G., Owen, M. J., Buccola, N. G., Mowry, B. J., Freedman, R., Amin, F., Black, D. W., Silverman, J. M., Byerley, W. F., and Cloninger, C. R. (2008) Identification of loci associated with schizophrenia by genome-wide association and follow-up, Nat. Genet. 40, 1053–1055.Google Scholar
  7. 7.
    Wang, K., Zhang, H., Ma, D., Bucan, M., Glessner, J. T., Abrahams, B. S., Salyakina, D., Imielinski, M., Bradfield, J. P., Sleiman, P. M., Kim, C. E., Hou, C., Frackelton, E., Chiavacci, R., Takahashi, N., Sakurai, T., Rappaport, E., Lajonchere, C. M., Munson, J., Estes, A., Korvatska, O., Piven, J., Sonnenblick, L. I., varez Retuerto, A. I., Herman, E. I., Dong, H., Hutman, T., Sigman, M., Ozonoff, S., Klin, A., Owley, T., Sweeney, J. A., Brune, C. W., Cantor, R. M., Bernier, R., Gilbert, J. R., Cuccaro, M. L., McMahon, W. M., Miller, J., State MW, Wassink, T. H., Coon, H., Levy, S. E., Schultz, R. T., Nurnberger, J. I., Haines, J. L., Sutcliffe, J. S., Cook, E. H., Minshew, N. J., Buxbaum, J. D., Dawson, G., Grant, S. F., Geschwind, D. H., Pericak-Vance, M. A., Schellenberg, G. D., and Hakonarson, H. (2009) Common genetic variants on 5p14.1 associate with autism spectrum disorders, Nature 459, 528–533.Google Scholar
  8. 8.
    ISC (2008) Rare chromosomal deletions and duplications increase risk of schizophrenia, Nature 455, 237–241.Google Scholar
  9. 9.
    Xu, B., Roos, J. L., Levy, S., van Rensburg, E. J., Gogos, J. A., and Karayiorgou, M. (2008) Strong association of de novo copy number mutations with sporadic schizophrenia, Nat. Genet. 40, 880–885.Google Scholar
  10. 10.
    Bodmer, W. and Bonilla, C. (2008) Common and rare variants in multifactorial susceptibility to common diseases, Nat. Genet. 40, 695–701.Google Scholar
  11. 11.
    Karayiorgou, M., Morris, M. A., Morrow, B., Shprintzen, R. J., Goldberg, R., Borrow, J., Gos, A., Nestadt, G., Wolyniec, P. S., Lasseter, V. K., and. (1995) Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11, Proc. Natl. Acad. Sci. USA 92, 7612–7616.Google Scholar
  12. 12.
    Pulver, A. E., Nestadt, G., Goldberg, R., Shprintzen, R. J., Lamacz, M., Wolyniec, P. S., Morrow, B., Karayiorgou, M., Antonarakis, S. E., Housman, D., and. (1994) Psychotic illness in patients diagnosed with velo-cardio-facial syndrome and their relatives, J. Nerv. Ment. Dis. 182, 476–478.Google Scholar
  13. 13.
    Murphy, K. C., Jones, L. A., and Owen, M. J. (1999) High rates of schizophrenia in adults with velo-cardio-facial syndrome, Arch. Gen. Psychiatry 56, 940–945.Google Scholar
  14. 14.
    Gothelf, D., Feinstein, C., Thompson, T., Gu, E., Penniman, L., Van, S. E., Kwon, H., Eliez, S., and Reiss, A. L. (2007) Risk factors for the emergence of psychotic disorders in adolescents with 22q11.2 deletion syndrome, Am. J. Psychiatry 164, 663–669.Google Scholar
  15. 15.
    Stefansson, H., Rujescu, D., Cichon, S., Pietilainen, O. P., Ingason, A., Steinberg, S., Fossdal, R., Sigurdsson, E., Sigmundsson, T., Buizer-Voskamp, J. E., Hansen, T., Jakobsen, K. D., Muglia, P., Francks, C., Matthews, P. M., Gylfason, A., Halldorsson, B. V., Gudbjartsson, D., Thorgeirsson, T. E., Sigurdsson, A., Jonasdottir, A., Jonasdottir, A., Bjornsson, A., Mattiasdottir, S., Blondal, T., Haraldsson, M., Magnusdottir, B. B., Giegling, I., Moller, H. J., Hartmann, A., Shianna, K. V., Ge, D., Need, A. C., Crombie, C., Fraser, G., Walker, N., Lonnqvist, J., Suvisaari, J., Tuulio-Henriksson, A., Paunio, T., Toulopoulou, T., Bramon, E., Di, F. M., Murray, R., Ruggeri, M., Vassos, E., Tosato, S., Walshe, M., Li, T., Vasilescu, C., Muhleisen, T. W., Wang, A. G., Ullum, H., Djurovic, S., Melle, I., Olesen, J., Kiemeney, L. A., Franke, B., Sabatti, C., Freimer, N. B., Gulcher, J. R., Thorsteinsdottir, U., Kong, A., Andreassen, O. A., Ophoff, R. A., Georgi, A., Rietschel, M., Werge, T., Petursson, H., Goldstein, D. B., Nothen, M. M., Peltonen, L., Collier, D. A., St, C. D., and Stefansson, K. (2008) Large recurrent microdeletions associated with schizophrenia, Nature 455, 232–236.Google Scholar
  16. 16.
    Bassett, A. S., Hodgkinson, K., Chow, E. W., Correia, S., Scutt, L. E., and Weksberg, R. (1998) 22q11 deletion syndrome in adults with schizophrenia, Am. J. Med. Genet. 81, 328–337.Google Scholar
  17. 17.
    Bassett, A. S., Chow, E. W., AbdelMalik, P., Gheorghiu, M., Husted, J., and Weksberg, R. (2003) The schizophrenia phenotype in 22q11 deletion syndrome, Am. J. Psychiatry 160, 1580–1586.Google Scholar
  18. 18.
    Chow, E. W., Zipursky, R. B., Mikulis, D. J., and Bassett, A. S. (2002) Structural brain abnormalities in patients with schizophrenia and 22q11 deletion syndrome, Biol. Psychiatry 51, 208–215.Google Scholar
  19. 19.
    vanAmelsvoort, T., Daly, E., Henry, J., Robertson, D., Ng, V., Owen, M., Murphy, K. C., and Murphy, D. G. (2004) Brain anatomy in adults with velocardiofacial syndrome with and without schizophrenia: preliminary results of a structural magnetic resonance imaging study, Arch. Gen. Psychiatry 61, 1085–1096.Google Scholar
  20. 20.
    vanAmelsvoort, T., Henry, J., Morris, R., Owen, M., Linszen, D., Murphy, K., and Murphy, D. (2004) Cognitive deficits associated with schizophrenia in velo-cardio-facial syndrome, Schizophr. Res. 70, 223–232.Google Scholar
  21. 21.
    Chow, E. W., Watson, M., Young, D. A., and Bassett, A. S. (2006) Neurocognitive profile in 22q11 deletion syndrome and schizophrenia, Schizophr. Res. 87, 270–278.Google Scholar
  22. 22.
    Xu, B., Woodroffe, A., Rodriguez-Murillo, L., Roos, J. L., van Rensburg, E. J., Abecasis, G. R., Gogos, J. A., and Karayiorgou, M. (2009) Elucidating the genetic architecture of familial schizophrenia using rare copy number variant and linkage scans, Proc. Natl. Acad. Sci. USA 106, 16746–16751.Google Scholar
  23. 23.
    Walsh, T., McClellan, J. M., McCarthy, S. E., Addington, A. M., Pierce, S. B., Cooper, G. M., Nord, A. S., Kusenda, M., Malhotra, D., Bhandari, A., Stray, S. M., Rippey, C. F., Roccanova, P., Makarov, V., Lakshmi, B., Findling, R. L., Sikich, L., Stromberg, T., Merriman, B., Gogtay, N., Butler, P., Eckstrand, K., Noory, L., Gochman, P., Long, R., Chen, Z., Davis, S., Baker, C., Eichler, E. E., Meltzer, P. S., Nelson, S. F., Singleton, A. B., Lee, M. K., Rapoport, J. L., King, M. C., and Sebat, J. (2008) Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia, Science 320, 539–543.Google Scholar
  24. 24.
    Need, A. C., Ge, D., Weale, M. E., Maia, J., Feng, S., Heinzen, E. L., Shianna, K. V., Yoon, W., Kasperaviciute, D., Gennarelli, M., Strittmatter, W. J., Bonvicini, C., Rossi, G., Jayathilake, K., Cola, P. A., McEvoy, J. P., Keefe, R. S., Fisher, E. M., St Jean, P. L., Giegling, I., Hartmann, A. M., Moller, H. J., Ruppert, A., Fraser, G., Crombie, C., Middleton, L. T., St, C. D., Roses, A. D., Muglia, P., Francks, C., Rujescu, D., Meltzer, H. Y., and Goldstein, D. B. (2009) A genome-wide investigation of SNPs and CNVs in schizophrenia, PLoS. Genet. 5, e1000373.Google Scholar
  25. 25.
    Kirov, G., Gumus, D., Chen, W., Norton, N., Georgieva, L., Sari, M., O’Donovan, M. C., Erdogan, F., Owen, M. J., Ropers, H. H., and Ullmann, R. (2008) Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia, Hum. Mol. Genet. 17, 458–465.Google Scholar
  26. 26.
    Vrijenhoek, T., Buizer-Voskamp, J. E., van, d. S., I, Strengman, E., Sabatti, C., Geurts van, K. A., Brunner, H. G., Ophoff, R. A., and Veltman, J. A. (2008) Recurrent CNVs disrupt three candidate genes in schizophrenia patients, Am. J. Hum. Genet. 83, 504–510.Google Scholar
  27. 27.
    Kirov, G., Grozeva, D., Norton, N., Ivanov, D., Mantripragada, K. K., Holmans, P., Craddock, N., Owen, M. J., and O’Donovan, M. C. (2009) Support for the involvement of large copy number variants in the pathogenesis of schizophrenia, Hum. Mol. Genet. 18, 1497–1503.Google Scholar
  28. 28.
    Ingason, A., Rujescu, D., Cichon, S., Sigurdsson, E., Sigmundsson, T., Pietilainen, O. P., Buizer-Voskamp, J. E., Strengman, E., Francks, C., Muglia, P., Gylfason, A., Gustafsson, O., Olason, P. I., Steinberg, S., Hansen, T., Jakobsen, K. D., Rasmussen, H. B., Giegling, I., Moller, H. J., Hartmann, A., Crombie, C., Fraser, G., Walker, N., Lonnqvist, J., Suvisaari, J., Tuulio-Henriksson, A., Bramon, E., Kiemeney, L. A., Franke, B., Murray, R., Vassos, E., Toulopoulou, T., Muhleisen, T. W., Tosato, S., Ruggeri, M., Djurovic, S., Andreassen, O. A., Zhang, Z., Werge, T., Ophoff, R. A., Rietschel, M., Nothen, M. M., Petursson, H., Stefansson, H., Peltonen, L., Collier, D., Stefansson, K., and Clair, D. M. (2009) Copy number variations of chromosome 16p13.1 region associated with schizophrenia, Mol. Psychiatry, Sept 29 (Epub ahead of print).Google Scholar
  29. 29.
    McCarthy, S. E., Makarov, V., Kirov, G., Addington, A. M., McClellan, J., Yoon, S., Perkins, D. O., Dickel, D. E., Kusenda, M., Krastoshevsky, O., Krause, V., Kumar, R. A., Grozeva, D., Malhotra, D., Walsh, T., Zackai, E. H., Kaplan, P., Ganesh, J., Krantz, I. D., Spinner, N. B., Roccanova, P., Bhandari, A., Pavon, K., Lakshmi, B., Leotta, A., Kendall, J., Lee, Y. H., Vacic, V., Gary, S., Iakoucheva, L. M., Crow, T. J., Christian, S. L., Lieberman, J. A., Stroup, T. S., Lehtimaki, T., Puura, K., Haldeman-Englert, C., Pearl, J., Goodell, M., Willour, V. L., Derosse, P., Steele, J., Kassem, L., Wolff, J., Chitkara, N., McMahon, F. J., Malhotra, A. K., Potash, J. B., Schulze, T. G., Nothen, M. M., Cichon, S., Rietschel, M., Leibenluft, E., Kustanovich, V., Lajonchere, C. M., Sutcliffe, J. S., Skuse, D., Gill, M., Gallagher, L., Mendell, N. R., Craddock, N., Owen, M. J., O’Donovan, M. C., Shaikh, T. H., Susser, E., Delisi, L. E., Sullivan, P. F., Deutsch, C. K., Rapoport, J., Levy, D. L., King, M. C., and Sebat, J. (2009) Microduplications of 16p11.2 are associated with schizophrenia, Nat. Genet. 41, 1223–1227.Google Scholar
  30. 30.
    Guilmatre, A., Dubourg, C., Mosca, A. L., Legallic, S., Goldenberg, A., Drouin-Garraud, V., Layet, V., Rosier, A., Briault, S., Bonnet-Brilhault, F., Laumonnier, F., Odent, S., Le, V. G., Joly-Helas, G., David, V., Bendavid, C., Pinoit, J. M., Henry, C., Impallomeni, C., Germano, E., Tortorella, G., Di, R. G., Barthelemy, C., Andres, C., Faivre, L., Frebourg, T., Saugier, V. P., and Campion, D. (2009) Recurrent rearrangements in synaptic and neurodevelopmental genes and shared biologic pathways in schizophrenia, autism, and mental retardation, Arch. Gen. Psychiatry 66, 947–956.Google Scholar
  31. 31.
    Rodriguez-Santiago, B., Brunet, A., Sobrino, B., Serra-Juhe, C., Flores, R., Armengol, L., Vilella, E., Gabau, E., Guitart, M., Guillamat, R., Martorell, L., Valero, J., Gutierrez-Zotes, A., Labad, A., Carracedo, A., Estivill, X., and Perez-Jurado, L. A. (2009) Association of common copy number variants at the glutathione S-transferase genes and rare novel genomic changes with schizophrenia, Mol. Psychiatry, June 16 (Epub ahead of print).Google Scholar
  32. 32.
    Shi, Y. Y., He, G., Zhang, Z., Tang, W., Zhang, J., Jr., Zhao, Q., Zhang, J., Sr., Li, X. W., Xi, Z. R., Fang, C., Zhao, X. Z., Feng, G. Y., and He, L. (2008) A study of rare structural variants in schizophrenia patients and normal controls from Chinese Han population, Mol. Psychiatry 13, 911–913.Google Scholar
  33. 33.
    Itsara, A., Cooper, G. M., Baker, C., Girirajan, S., Li, J., Absher, D., Krauss, R. M., Myers, R. M., Ridker, P. M., Chasman, D. I., Mefford, H., Ying, P., Nickerson, D. A., and Eichler, E. E. (2009) Population analysis of large copy number variants and hotspots of human genetic disease, Am. J. Hum. Genet. 84, 148–161.Google Scholar
  34. 34.
    Kirov, G. (2010) The role of copy number variation in schizophrenia, Expert. Rev. Neurother. 10, 25–32.Google Scholar
  35. 35.
    Paterlini, M., Zakharenko, S. S., Lai, W. S., Qin, J., Zhang, H., Mukai, J., Westphal, K. G., Olivier, B., Sulzer, D., Pavlidis, P., Siegelbaum, S. A., Karayiorgou, M., and Gogos, J. A. (2005) Transcriptional and behavioral interaction between 22q11.2 orthologs modulates schizophrenia-related phenotypes in mice, Nat. Neurosci. 8, 1586–1594.Google Scholar
  36. 36.
    Paylor, R., Glaser, B., Mupo, A., Ataliotis, P., Spencer, C., Sobotka, A., Sparks, C., Choi, C. H., Oghalai, J., Curran, S., Murphy, K. C., Monks, S., Williams, N., O’Donovan, M. C., Owen, M. J., Scambler, P. J., and Lindsay, E. (2006) Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: implications for 22q11 deletion syndrome, Proc. Natl. Acad. Sci. USA 103, 7729–7734.Google Scholar
  37. 37.
    Mukai, J., Dhilla, A., Drew, L. J., Stark, K. L., Cao, L., MacDermott, A. B., Karayiorgou, M., and Gogos, J. A. (2008) Palmitoylation-dependent neurodevelopmental deficits in a mouse model of 22q11 microdeletion, Nat. Neurosci. 11, 1302–1310.Google Scholar
  38. 38.
    Stark, K. L., Xu, B., Bagchi, A., Lai, W. S., Liu, H., Hsu, R., Wan, X., Pavlidis, P., Mills, A. A., Karayiorgou, M., and Gogos, J. A. (2008) Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model, Nat. Genet. 40, 751–760.Google Scholar
  39. 39.
    Rujescu, D., Ingason, A., Cichon, S., Pietilainen, O. P., Barnes, M. R., Toulopoulou, T., Picchioni, M., Vassos, E., Ettinger, U., Bramon, E., Murray, R., Ruggeri, M., Tosato, S., Bonetto, C., Steinberg, S., Sigurdsson, E., Sigmundsson, T., Petursson, H., Gylfason, A., Olason, P. I., Hardarsson, G., Jonsdottir, G. A., Gustafsson, O., Fossdal, R., Giegling, I., Moller, H. J., Hartmann, A. M., Hoffmann, P., Crombie, C., Fraser, G., Walker, N., Lonnqvist, J., Suvisaari, J., Tuulio-Henriksson, A., Djurovic, S., Melle, I., Andreassen, O. A., Hansen, T., Werge, T., Kiemeney, L. A., Franke, B., Veltman, J., Buizer-Voskamp, J. E., Sabatti, C., Ophoff, R. A., Rietschel, M., Nothen, M. M., Stefansson, K., Peltonen, L., St, C. D., Stefansson, H., and Collier, D. A. (2009) Disruption of the neurexin 1 gene is associated with schizophrenia, Hum. Mol. Genet. 18, 988–996.Google Scholar
  40. 40.
    Reissner, C., Klose, M., Fairless, R., and Missler, M. (2008) Mutational analysis of the neurexin/neuroligin complex reveals essential and regulatory components, Proc. Natl. Acad. Sci. USA 105, 15124–15129.Google Scholar
  41. 41.
    Napoli, I., Mercaldo, V., Boyl, P. P., Eleuteri, B., Zalfa, F., De, R. S., Di, M. D., Mohr, E., Massimi, M., Falconi, M., Witke, W., Costa-Mattioli, M., Sonenberg, N., Achsel, T., and Bagni, C. (2008) The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP, Cell 134, 1042–1054.Google Scholar
  42. 42.
    Jin, P., Zarnescu, D. C., Ceman, S., Nakamoto, M., Mowrey, J., Jongens, T. A., Nelson, D. L., Moses, K., and Warren, S. T. (2004) Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway, Nat. Neurosci. 7, 113–117.Google Scholar
  43. 43.
    Pillai, R. S., Bhattacharyya, S. N., Artus, C. G., Zoller, T., Cougot, N., Basyuk, E., Bertrand, E., and Filipowicz, W. (2005) Inhibition of translational initiation by Let-7 MicroRNA in human cells, Science 309, 1573–1576.Google Scholar
  44. 44.
    Curtis, C., Lynch, A. G., Dunning, M. J., Spiteri, I., Marioni, J. C., Hadfield, J., Chin, S. F., Brenton, J. D., Tavare, S., and Caldas, C. (2009) The pitfalls of platform comparison: DNA copy number array technologies assessed, BMC. Genomics 10, 588.Google Scholar
  45. 45.
    Zhang, N. R., Senbabaoglu, Y., and Li, J. Z. (2010) Joint estimation of DNA copy number from multiple platforms, Bioinformatics. 26, 153–160.Google Scholar
  46. 46.
    McCarroll, S. A., Kuruvilla, F. G., Korn, J. M., Cawley, S., Nemesh, J., Wysoker, A., Shapero, M. H., de Bakker, P. I., Maller, J. B., Kirby, A., Elliott, A. L., Parkin, M., Hubbell, E., Webster, T., Mei, R., Veitch, J., Collins, P. J., Handsaker, R., Lincoln, S., Nizzari, M., Blume, J., Jones, K. W., Rava, R., Daly, M. J., Gabriel, S. B., and Altshuler, D. (2008) Integrated detection and population-genetic analysis of SNPs and copy number variation, Nat. Genet. 40, 1166–1174.Google Scholar
  47. 47.
    Ionita-Laza, I., Rogers, A. J., Lange, C., Raby, B. A., and Lee, C. (2009) Genetic association analysis of copy-number variation (CNV) in human disease pathogenesis, Genomics 93, 22–26.Google Scholar
  48. 48.
    Conrad, D. F., Pinto, D., Redon, R., Feuk, L., Gokcumen, O., Zhang, Y., Aerts, J., Andrews, T. D., Barnes, C., Campbell, P., Fitzgerald, T., Hu, M., Ihm, C. H., Kristiansson, K., Macarthur, D. G., MacDonald, J. R., Onyiah, I., Pang, A. W., Robson, S., Stirrups, K., Valsesia, A., Walter, K., Wei, J., Tyler-Smith, C., Carter, N. P., Lee, C., Scherer, S. W., and Hurles, M. E. (2009) Origins and functional impact of copy number variation in the human genome, Nature, Oct. 7 (Epub ahead of print).Google Scholar
  49. 49.
    Sigurdsson, T., Stark, K. L., Karayiorgou, M., Gogos, J. A., and Gordon, J. A. (2010) Impaired hippocampal-prefrontal synchrony in a genetic mouse model of schizophrenia. Nature, in press.Google Scholar
  50. 50.
    Raff, M. (2009) New routes into the human brain, Cell 139, 1209–1211.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Rebecca J. Levy
    • 1
    • 2
  • Bin Xu
    • 1
    • 3
  • Joseph A. Gogos
    • 3
    • 4
  • Maria Karayiorgou
    • 1
    • 5
    Email author
  1. 1.Department of PsychiatryColumbia University Medical CenterNew YorkUSA
  2. 2.Doctoral Program in Neurobiology and BehaviorColumbia UniversityNew YorkUSA
  3. 3.Department of Physiology and Cellular BiophysicsColumbia University Medical CenterNew YorkUSA
  4. 4.Department of NeuroscienceColumbia University Medical CenterNew YorkUSA
  5. 5.New York State Psychiatric InstituteNew YorkUSA

Personalised recommendations