Determination of the Clinical Significance of an Unclassified Variant

  • Victor Wei ZhangEmail author
  • Jing Wang
Part of the Methods in Molecular Biology book series (MIMB, volume 837)


After completion of Human Genome Project (HGP) in 2003, as well as the new technology development in genomic research, the most accurate genetics blueprint of human is available. Researchers started to dissect and understand the genetic map of the human species. As a consequence, analyses of novel or unclassified genetic variations become increasingly important in translational medicine. One of the medical specialties in modern medicine is clinical genetics, which is overseen by the American Board of Medical Genetics (ABMG). In 2008, ABMG published a guideline for interpretation of new variants using ACMG Standards and Guidelines (Richards et al. Genet Med 10:294–300, 2008). In this chapter, we provide updated procedures of evaluating different databases, computational tools, and structural analysis methods that we currently utilize to assist in clinical interpretation.

Key words

Genome Database Computation Structure Analysis amino acid conservation VOUS unclassified variants 


  1. 1.
    Richards, C. S., Bale, S., Bellissimo, D. B., Das, S., Grody, W. W., Hegde, M. R., Lyon, E., Ward, B. E., and the Molecular Subcommittee of the ACMG; Laboratory Quality Assurance Committee. (2008) ACMG recommen­dations for standards for interpretation and reporting of sequence variations: Revisions 2007, Genetics in Medicine 10, 294–300.Google Scholar
  2. 2.
    Stenson, P., Mort, M., Ball, E., Howells, K., Phillips, A., Thomas, N., and Cooper, D. (2009) The Human Gene Mutation Database: 2008 update, Genome Med 1, 13.PubMedCrossRefGoogle Scholar
  3. 3.
    Copeland, W. C. (2008) Inherited Mitochondrial Diseases of DNA Replication, Annual Review of Medicine 59, 131–146.PubMedCrossRefGoogle Scholar
  4. 4.
    Ferré, M., Amati-Bonneau, P., Tourmen, Y., Malthièry, Y., and Reynier, P. (2005) eOPA1: An online database for OPA1 mutations, Human Mutation 25, 423–428.PubMedCrossRefGoogle Scholar
  5. 5.
    Kumar, P., Henikoff, S., and Ng, P. C. (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm, Nat. Protocols 4, 1073–1081.CrossRefGoogle Scholar
  6. 6.
    Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, A. S., and Sunyaev, S. R. (2010) A method and server for predicting damaging missense mutations, Nat Meth 7, 248–249.CrossRefGoogle Scholar
  7. 7.
    Cartegni, L., Wang, J., Zhu, Z., Zhang, M. Q., and Krainer, A. R. (2003) ESEfinder: a web resource to identify exonic splicing enhancers, Nucleic Acids Research 31, 3568–3571.PubMedCrossRefGoogle Scholar
  8. 8.
    Cartegni, L., Chew, S. L., and Krainer, A. R. (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing, Nat Rev Genet 3, 285–298.PubMedCrossRefGoogle Scholar
  9. 9.
    Brunak, S., Engelbrecht, J., and Knudsen, S. (1991) Prediction of human mRNA donor and acceptor sites from the DNA sequence, Journal of Molecular Biology 220, 49–65.PubMedCrossRefGoogle Scholar
  10. 10.
    Reese, M. G., Eeckman, F. H., Kulp, D., and Haussler, D. (1997) Improved splice site detection in Genie, J Comput Biol 4, 311–323.PubMedCrossRefGoogle Scholar
  11. 11.
    Ingman, M., and Gyllensten, U. (2005) mtDB: Human Mitochondrial Genome Database, a resource for population genetics and medical sciences, Nucleic Acids Research 34, D749-D751.CrossRefGoogle Scholar
  12. 12.
    Helm, M., Brule, H., Friede, D., Giege, R., Putz, D., and Florentz, C. (2000) Search for characteristic structural features of mammalian mitochondrial tRNAs, RNA 6, 1356–1379.PubMedCrossRefGoogle Scholar
  13. 13.
    Cohn, A. C., Toomes, C., Potter, C., Towns, K. V., Hewitt, A. W., Inglehearn, C. F., Craig, J. E., and Mackey, D. A. (2007) Autosomal Dominant Optic Atrophy: Penetrance and Expressivity in Patients With OPA1 Mutations, American Journal of Ophthalmology 143, ­656–662.e651.Google Scholar
  14. 14.
    Delettre, C., Lenaers, G., Griffoin, J.-M., Gigarel, N., Lorenzo, C., Belenguer, P., Pelloquin, L., Grosgeorge, J., Turc-Carel, C., Perret, E., Astarie-Dequeker, C., Lasquellec, L., Arnaud, B., Ducommun, B., Kaplan, J., and Hamel, C. P. (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy, Nat Genet 26, 207–210.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Mitochondrial Diagnostic Laboratory, Medical Genetics Laboratories, Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUSA
  2. 2.Medical Genetics Laboratories, Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUSA

Personalised recommendations