The Induction of Mycotoxins by Trichothecene Producing Fusarium Species

  • Rohan Lowe
  • Mélanie Jubault
  • Gail Canning
  • Martin Urban
  • Kim E. Hammond-Kosack
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 835)

Abstract

In recent years, many Fusarium species have emerged which now threaten the productivity and safety of small grain cereal crops worldwide. During floral infection and post-harvest on stored grains the Fusarium hyphae produce various types of harmful mycotoxins which subsequently contaminate food and feed products. This article focuses specifically on the induction and production of the type B sesquiterpenoid trichothecene mycotoxins. Methods are described which permit in liquid culture the small or large scale production and detection of deoxynivalenol (DON) and its various acetylated derivatives. A wheat (Triticum aestivum L.) ear inoculation assay is also explained which allows the direct comparison of mycotoxin production by species, chemotypes and strains with different growth rates and/or disease-causing abilities. Each of these methods is robust and can be used for either detailed time-course studies or end-point analyses. Various analytical methods are available to quantify the levels of DON, 3A-DON and 15A-DON. Some criteria to be considered when making selections between the different analytical methods available are briefly discussed.

Key words

Fusarium graminearum Gibberella zeae Head scab disease Fusarium culmorum Deoxynivalenol DON Trichothecene mycotoxin detection Chemotype Wheat ear inoculation Induction of mycotoxin production in liquid culture 

References

  1. 1.
    Agrios, G. N. (2005) Plant Pathology, Academic Press, Inc., London.Google Scholar
  2. 2.
    Cuzick, A., Urban, M., and Hammond-Kosack, K. (2008) Fusarium graminearum gene deletion mutants map1 and tri5 reveal similarities and differences in the pathogenicity requirements to cause disease on Arabidopsis and wheat floral tissue. New Phytologist 177, 990–1000.PubMedCrossRefGoogle Scholar
  3. 3.
    Mudge, A. M., Dill-Macky, R., Dong, Y., Gardiner, D. M., White, R. G., and Manners, J. M. (2006) A role for the mycotoxin deoxynivalenol in stem colonisation during crown rot disease of wheat caused by Fusarium graminearum and Fusarium pseudograminearum. Physiological and Molecular Plant Pathology 69, 73–85.CrossRefGoogle Scholar
  4. 4.
    Proctor, R. H., Hohn, T. M., and McCormick, S. P. (1997) Restoration of wild-type virulence to Tri5 disruption mutants of Gibberella zeae via gene reversion and mutant complementation. Microbiology 143, 2583–2591.PubMedCrossRefGoogle Scholar
  5. 5.
    Proctor, R. H., Hohn, T. M., McCormick, S. P., and Desjardins, A. E. (1995) Tri6 encodes an unusual zinc-finger protein involved in regulation of trichothecene biosynthesis in Fusarium sporotrichioides. Applied and Environmental Microbiology 61, 1923–1930.PubMedGoogle Scholar
  6. 6.
    Gaffoor, I., Brown, D. W., Plattner, R., Proctor, R. H., Qi, W., and Trail, F. (2005) Functional analysis of the polyketide synthase genes in the filamentous fungus Gibberella zeae (Anamorph Fusarium graminearum). Eukaryot Cell 4, 1926–1933.PubMedCrossRefGoogle Scholar
  7. 7.
    Gaffoor, I., and Trail, F. (2006) Characterization of two polyketide synthase genes involved in zearalenone biosynthesis in Gibberella zeae. Applied and Environmental Microbiology 72, 1793–1799.PubMedCrossRefGoogle Scholar
  8. 8.
    Leonard, K. J., and Bushnell, W. R. (2003) Fusarium head blight of wheat and barley, The American Phytopathological Society, Minnesota.Google Scholar
  9. 9.
    McMullen, M., Jones, R., and Gallenberg, D. (1997) Scab of wheat and barley: a re-emerging disease of devasting impact. Plant Disease 81, 1340–1348.CrossRefGoogle Scholar
  10. 10.
    Parry, D. W., Jenkinson, P., and McLeod, L. (1995) Fusarium ear blight (scab) in small grain cereals - a review. Plant Pathology 44, 207–238.CrossRefGoogle Scholar
  11. 11.
    Wu, F., and Munkvold, G. P. (2008) Mycotoxins in ethanol co-products: modeling economic impacts on the livestock industry and management strategies. J Agric Food Chem 56, 3900–3911.PubMedCrossRefGoogle Scholar
  12. 12.
    Beacham, A., Antoniw, J., and Hammond-Kosack, K. (2009) A genomic fungal foray. The Biologist 56, 98–105.Google Scholar
  13. 13.
    Desjardins, A. E. (2006) Fusarium Mycotoxins - Chemistry, Genetics and Biology, The American Phytopathological Society, St. Paul, Minnesota USA.Google Scholar
  14. 14.
    Kimura, M., Tokai, T., Takahashi-Ando, N., Ohsato, S., and Fujimura, M. (2007) Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes, and evolution. Biosci Biotechnol Biochem 71, 2105–2123.PubMedCrossRefGoogle Scholar
  15. 15.
    Winnenburg, R., Urban, M., Beacham, A., Baldwin, T. K., Holland, S., Lindeberg, M., Hansen, H., Rawlings, C., Hammond-Kosack, K. E., and Kohler, J. (2008) PHI-base update: additions to the pathogen host interaction database. Nucleic Acids Res 36, D572–576.PubMedCrossRefGoogle Scholar
  16. 16.
    Brown, N. A., Urban, M., Van de Meene, A. M. L., and Hammond-Kosack, K. E. (2010) The infection biology of Fusarium graminearum: Defining the pathways of spikelet to spikelet colonisation in wheat ears. Fungal Biology 114, 535–571.CrossRefGoogle Scholar
  17. 17.
    Audenaert, K., Callewaert, E., Hofte, M., De Saeger, S., and Haesaert, G. (2010) Hydrogen peroxide induced by the fungicide prothioconazole triggers deoxynivalenol (DON) production by Fusarium graminearum. BMC Microbiol 10, 112.PubMedCrossRefGoogle Scholar
  18. 18.
    Buerstmayr, H., Ban, T., and Anderson, J. A. (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breeding 128, 1–26.CrossRefGoogle Scholar
  19. 19.
    Polley, R. W., and Turner, J. A. (1995) Surveys of stem base diseases and Fusarium Ear Diseases in winter-wheat in England, Wales and Scotland, 1989-1990. Annals of Applied Biology 126, 45–59.CrossRefGoogle Scholar
  20. 20.
    Gilbert, J., Clear, R. M., Ward, T. J., Gaba, D., Tekauz, A., Turkington, T. K., Woods, S. M., Nowicki, T., and O’Donnell, K. (2010) Relative aggressiveness and production of 3-or 15-acetyl deoxynivalenol and deoxynivalenol by Fusarium graminearum in spring wheat. Canadian Journal of Plant Pathology-Revue Canadienne De Phytopathologie 32, 146–152.CrossRefGoogle Scholar
  21. 21.
    Brown, D. W., McCormick, S. P., Alexander, N. J., Proctor, R. H., and Desjardins, A. E. (2002) Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species. Fungal Genetics & Biology 36, 224–233.CrossRefGoogle Scholar
  22. 22.
    Kimura, M., Tokai, T., O’Donnell, K., Ward, T. J., Fujimura, M., Hamamoto, H., Shibata, T., and Yamaguchi, I. (2003) The trichothecene biosynthesis gene cluster of Fusarium graminearum F15 contains a limited number of essential pathway genes and expressed non-essential genes. FEBS Letters 539, 105–110.PubMedCrossRefGoogle Scholar
  23. 23.
    Alexander, N. J., McCormick, S., Waalwijk, C., and Proctor, R. H. (2010) Genetic basis for the 3ADON and 15 ADON trichothecene chemotypes in Fusarium graminearum. In: 10th Eur. conf. fungal Genetics, Leiden, The Netherlands.Google Scholar
  24. 24.
    Tag, A. G., Garifullina, G. F., Peplow, A. W., Ake, C., Phillips, T. D., Hohn, T. M., and Beremand, M. N. (2001) A novel regulatory gene, Tri10, controls trichothecene toxin production and gene expression. Applied and Environmental Microbiology 67, 5294–5302.PubMedCrossRefGoogle Scholar
  25. 25.
    Seong, K.-Y., Pasquali, M., Zhou, X., Song, J., Karen, H., McCormick, S., Dong, Y., Xu, J.-R., and Kistler, H. C. (2009) Global gene regulation by Fusarium transcription factors Tri6 and Tri10 reveals adaptations for toxin biosynthesis. Molecular Microbiology 9999.Google Scholar
  26. 26.
    McCormick, S. P., Harris, L. J., Alexander, N. J., Ouellet, T., Saparno, A., Allard, S., and Desjardins, A. E. (2004) Tri1 in Fusarium graminearum encodes a P450 oxygenase. Appl Environ Microbiol 70, 2044–2051.PubMedCrossRefGoogle Scholar
  27. 27.
    Meek, I. B., Peplow, A. W., Ake, C., Phillips, T. D., and Beremand, M. N. (2003) Tri1 encodes the cytochrome P450 monooxygenase for C-8 hydroxylation during trichothecene biosynthesis in Fusarium sporotrichioides and resides upstream of another new Tri gene. Applied and Environ-mental Microbiology 69, 1607–1613.PubMedCrossRefGoogle Scholar
  28. 28.
    McCormick, S. P., Alexander, N. J., Trapp, S. E., and Hohn, T. M. (1999) Disruption of TRI101, the Gene Encoding Trichothecene 3-O-Acetyltransferase, from Fusarium sporotrichioides. Applied and Environmental Microbiology 65, 5252–5256.PubMedGoogle Scholar
  29. 29.
    Cuomo, C. A., Guldener, U., Xu, J. R., Trail, F., Turgeon, B. G., Di Pietro, A., Walton, J. D., Ma, L. J., Baker, S. E., Rep, M., Adam, G., Antoniw, J., Baldwin, T., Calvo, S., Chang, Y. L., Decaprio, D., Gale, L. R., Gnerre, S., Goswami, R. S., Hammond-Kosack, K., Harris, L. J., Hilburn, K., Kennell, J. C., Kroken, S., Magnuson, J. K., Mannhaupt, G., Mauceli, E., Mewes, H. W., Mitterbauer, R., Muehlbauer, G., Munsterkotter, M., Nelson, D., O’Donnell, K., Ouellet, T., Qi, W., Quesneville, H., Roncero, M. I., Seong, K. Y., Tetko, I. V., Urban, M., Waalwijk, C., Ward, T. J., Yao, J., Birren, B. W., and Kistler, H. C. (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317, 1400–1402.PubMedCrossRefGoogle Scholar
  30. 30.
    Guldener, U., Seong, K. Y., Boddu, J., Cho, S., Trail, F., Xu, J. R., Adam, G., Mewes, H. W., Muehlbauer, G. J., and Kistler, H. C. (2006) Development of a Fusarium graminearum Affymetrix GeneChip for profiling fungal gene expression in vitro and in planta. Fungal Genetics and Biology 43, 316–325.PubMedCrossRefGoogle Scholar
  31. 31.
    Jansen, C., von Wettstein, D., Schafer, W., Kogel, K. H., Felk, A., and Maier, F. J. (2005) Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proceedings of the National Academy of Sciences of the United States of America 102, 16892–16897.PubMedCrossRefGoogle Scholar
  32. 32.
    Ochiai, N., Tokai, T., Takahashi-Ando, N., Fujimura, M., and Kimura, M. (2007) Genetically engineered Fusarium as a tool to evaluate the effects of environmental factors on initiation of trichothecene biosynthesis. FEMS Microbiol Lett 275, 53–61.PubMedCrossRefGoogle Scholar
  33. 33.
    Schmidt-Heydt, M., and Geisen, R. (2007) A microarray for monitoring the production of mycotoxins in food. Int J Food Microbiol 117, 131–140.PubMedCrossRefGoogle Scholar
  34. 34.
    Baldwin, T. K., Urban, M., Brown, N., and Hammond-Kosack, K. E. (2010) A role for Topoisomerase I in Fusarium graminearum and F. culmorum pathogenesis and sporulation. Molecular Plant-Microbe Interactions 23, 566–577.PubMedCrossRefGoogle Scholar
  35. 35.
    Urban, M., Mott, E., Farley, T., and Hammond-Kosack, K. (2003) The Fusarium graminearum MAP1 gene is essential for pathogenicity and development of perithecia. Molecular Plant Pathology 4, 347–359.PubMedCrossRefGoogle Scholar
  36. 36.
    Miller, J. D., Taylor, N., and Greenhalgh, R. (1983) Production of deoxynivalenol and related compounds in liquid culture by Fusarium graminearum. Canadian Journal of Microbiology 29, 1171–1178.CrossRefGoogle Scholar
  37. 37.
    Jiao, F., Kawakami, A., and Nakajima, T. (2008) Effects of different carbon sources on trichothecene production and Tri gene expression by Fusarium graminearum in liquid culture. FEMS Microbiology Letters 285, 212–219.PubMedCrossRefGoogle Scholar
  38. 38.
    Gardiner, D. M., Kazan, K., and Manners, J. M. (2009) Nutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum. Fungal Genet Biol, 604–613.Google Scholar
  39. 39.
    Gardiner, D. M., Osborne, S., Kazan, K., and Manners, J. M. (2009) Low pH regulates the production of deoxynivalenol by Fusarium graminearum. Microbiology 155, 3149–3156.PubMedCrossRefGoogle Scholar
  40. 40.
    Ramirez, M. L., Chulze, S., and Magan, N. (2006) Temperature and water activity effects on growth and temporal deoxynivalenol production by two Argentinean strains of Fusarium graminearum on irradiated wheat grain. International Journal of Food Microbiology 106, 291–296.PubMedCrossRefGoogle Scholar
  41. 41.
    Ponts, N., Pinson-Gadais, L., Verdal-Bonnin, M.-N., Barreau, C., and Richard-Forget, F. (2006) Accumulation of deoxynivalenol and its 15-acetylated form is significantly modulated by oxidative stress in liquid cultures of Fusarium graminearum. FEMS Microbiol Lett 258, 102–107.PubMedCrossRefGoogle Scholar
  42. 42.
    Hope, R., Aldred, D., and Magan, N. (2005) Comparison of environmental profiles for growth and deoxynivalenol production by Fusarium culmorum and F. graminearum on wheat grain. Letters in Applied Microbiology 40, 295–300.PubMedCrossRefGoogle Scholar
  43. 43.
    Schmidt-Heydt, M., Magan, N., and Geisen, R. (2008) Stress induction of mycotoxin biosynthesis genes by abiotic factors. FEMS Microbiol Lett 284, 142–149.PubMedCrossRefGoogle Scholar
  44. 44.
    Ponts, N., Couedelo, L., Pinson-Gadais, L., Verdal-Bonnin, M. N., Barreau, C., and Richard-Forget, F. (2009) Fusarium response to oxidative stress by H2O2 is trichothecene chemotype-dependent. FEMS Microbiol Lett 293, 255–262.PubMedCrossRefGoogle Scholar
  45. 45.
    Tacke, B. K., and Casper, H. H. (1996) Determination of deoxynivalenol in wheat, barley and malt by column cleanup and gas chromatography with electron capture detection. Journal of the Association of Official Analytical Chemists 79, 472–475.Google Scholar
  46. 46.
    Harris, L. J., Alexander, N. J., Saparno, A., Blackwell, B., McCormick, S. P., Desjardins, A. E., Robert, L. S., Tinker, N., Hattori, J., Piche, C., Schernthaner, J. P., Watson, R., and Ouellet, T. (2007) A novel gene cluster in Fusarium graminearum contains a gene that contributes to butenolide synthesis. Fungal Genet Biol 44, 293–306.PubMedCrossRefGoogle Scholar
  47. 47.
    Lowe, R. G., Allwood, J. W., Galster, A. M., Urban, M., Daudi, A., Canning, G. G., Ward, J., Beale, M., and Hammond-Kosack, K. (2010) A combined 1H NMR and ESI-MS analysis to understand the basal metabolism of plant pathogenic Fusarium species. Mol Plant Microbe Interact 23, 1605–1818.PubMedCrossRefGoogle Scholar
  48. 48.
    Gardiner, D. M., Kazan, K., and Manners, J. M. (2009) Nutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum. Fungal Genetics and Biology, 604–613.Google Scholar
  49. 49.
    Gardiner, D. M., Kazan, K., and Manners, J. M. (2009) Novel Genes of Fusarium graminearum That Negatively Regulate Deoxynivalenol Production and Virulence. Molecular Plant-Microbe Interactions 22, 1588–1600.PubMedCrossRefGoogle Scholar
  50. 50.
    Ward, J. L., Harris, C., Lewis, J., and Beale, M. H. (2003) Assessment of H-1 NMR spectroscopy and multivariate analysis as a technique for metabolite fingerprinting of Arabidopsis thaliana. Phytochemistry 62, 949–957.PubMedCrossRefGoogle Scholar
  51. 51.
    Ehrlich, K. C., and Daigle, K. W. (1987) Protein-synthesis inhibition by 8-Oxo-12,13-epoxytri-chothecenes. Biochimica Et Biophysica Acta 923, 206–213.PubMedCrossRefGoogle Scholar
  52. 52.
    Ueno, Y., Nakajima, M., Sakai, K., Ishii, K., Sato, N., and Shimada, N. (1973) Comparative toxicology of trichothene mycotoxins -inhibition of protein-synthesis in animal cells. J Biochem-Tokyo 74, 285–296.PubMedGoogle Scholar
  53. 53.
    Hilton, A. J. (1999) Mechanisms of resistance to Fusarium ear blight in winter wheat (Triticum aestivum L.), In Harper Adams Agricultural College in collaboration with Plant Breeding International, Open University, Cambridge.Google Scholar
  54. 54.
    Holzapfel, J., Voss, H. H., Miedaner, T., Korzun, V., Haberle, J., Schweizer, G., Mohler, V., Zimmermann, G., and Hartl, L. (2008) Inheritance of resistance to Fusarium head blight in three European winter wheat populations. Theoretical and Applied Genetics 117, 1119–1128.PubMedCrossRefGoogle Scholar
  55. 55.
    Srinivasachary, Gosman, N., Steed, A., Simmonds, J., Leverington-Waite, M., Wang, Y., Snape, J., and Nicholson, P. (2008) Susceptibility to Fusarium head blight is associated with the Rht-D1b semi-dwarfing allele in wheat. Theoretical and Applied Genetics 116, 1145–1153.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Rohan Lowe
    • 1
  • Mélanie Jubault
    • 1
  • Gail Canning
    • 1
  • Martin Urban
    • 1
  • Kim E. Hammond-Kosack
    • 1
  1. 1.Department of Plant Pathology and MicrobiologyCentre for Sustainable Pest and Disease Management, Rothamsted ResearchHarpendenUK

Personalised recommendations