In Silico Identification and Characterization of Effector Catalogs

  • Ronnie de Jonge
Part of the Methods in Molecular Biology book series (MIMB, volume 835)


Many characterized fungal effector proteins are small secreted proteins. Effectors are defined as those proteins that alter host cell structure and/or function by facilitating pathogen infection. The identification of effectors by molecular and cell biology techniques is a difficult task. However, with the availability of whole-genome sequences, these proteins can now be predicted in silico. Here, we describe in detail how to identify and characterize effectors from a defined fungal proteome using in silico techniques.

Key words

Secretome Effector Pathogen Host Interaction PHI-base SignalP InterProScan GO Terms WoLF PSORT 



This research was supported by a Vidi grant of the Research Council for Earth and Life Sciences (ALW) of the Netherlands Organization for Scientific Research (NWO), by the European Research Area–Network (ERA-NET) Plant Genomics and by the Centre for BioSystems Genomics (CBSG), which is part of the Netherlands Genomics Initiative and NWO.


  1. 1.
    Metkzer ML (2010) Sequencing technologies – the next generation. Nat. Rev. Genet. 11, 31–46CrossRefGoogle Scholar
  2. 2.
    Miller JR, Koren S and Sutton G (2010) Assembly algorithms for next-generation sequencing data. Genomics 95, 315–327PubMedCrossRefGoogle Scholar
  3. 3.
    Martinez D, Grigoriev I and Salamov A (2010) Annotation of protein-coding genes in fungal genomes. Appl. Comput. Math. 9, 56–65Google Scholar
  4. 4.
    Finn RD, et al (2010) The Pfam protein families database. Nucl. Acid. Res. 38, 211–222CrossRefGoogle Scholar
  5. 5.
    Zdobnov EM and Apweiler R (2001) InterProScan - an integration platform for the signature-recognition methods in InterPro. Bioinform. 17, 847–848CrossRefGoogle Scholar
  6. 6.
    Conesa A, et al (2005) Blast2go: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinform. 21, 3674–3676CrossRefGoogle Scholar
  7. 7.
    Götz S, et al (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucl. Acid. Res. 36, 3420–3435CrossRefGoogle Scholar
  8. 8.
    Altschul SF, et al (1990) Basic Local Alignment Search Tool. J. Mol. Biol. 215, 403–410PubMedGoogle Scholar
  9. 9.
    Nielsen H, et al (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10, 1–6PubMedCrossRefGoogle Scholar
  10. 10.
    Bendtsen JD, et al (2004) Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795PubMedCrossRefGoogle Scholar
  11. 11.
    Käll L, Krogh A and Sonnhammer ELL (2004) A combined transmembrane topology and signal peptide prediction method. J. Mol. Biol. 338, 1027–1036PubMedCrossRefGoogle Scholar
  12. 12.
    Horton P, et al (2007) WoLF PSORT: protein localization predictor. Nucl. Acid. Res. 35, 585–587CrossRefGoogle Scholar
  13. 13.
    Emanuelsson O, et al (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protocol. 2, 953–971CrossRefGoogle Scholar
  14. 14.
    Nakai K and Horton P (2007) Computational prediction of subcellular localization. Method. in Mol Biol. 390, 429–466CrossRefGoogle Scholar
  15. 15.
    de Jonge R, et al (2010) Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329, 953–955PubMedCrossRefGoogle Scholar
  16. 16.
    Krogh A et al (2001) Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J. Mol. Biol. 305, 567–580PubMedCrossRefGoogle Scholar
  17. 17.
    Käll L, Krogh A and Sonnhammer ELL (2007) Advantages of combined transmembrane topo­logy and signal peptide prediction--the Phobius web server. Nucl. Acid. Res. 35, 429–432CrossRefGoogle Scholar
  18. 18.
    Horton P and Nakai K (1999) Psort: a program for detecting sorting signals in proteins and determining their subcellular localization. TIBS 24, 34–xxGoogle Scholar
  19. 19.
    Nakai K and Kanehisa M (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14, 879–911CrossRefGoogle Scholar
  20. 20.
    Bannai H, et al (2002) Extensive feature detection of N-terminal protein sorting signals. Bioinform.18, 298–305Google Scholar
  21. 21.
    Casadio R, Martelli PL and Pierleoni A (2008) The prediction of protein subcellular localization from sequence: a shortcut to functional genome annotation. Brief. Func. Genom. Proteom. 7, 63–73CrossRefGoogle Scholar
  22. 22.
    Hawkings J and Boden M (2006) Detecting and sorting targeting peptides with neural networks and support vector machines. J. Bioinform. Comput. Biol. 4, 1–18CrossRefGoogle Scholar
  23. 23.
    Nair R and Rost B (2005) Mimicking cellular sorting improves prediction of subcelluar localization. J. Mol. Biol. 348, 85–100PubMedCrossRefGoogle Scholar
  24. 24.
    Pierleoni A, et al (2006) BaCelLo: a balanced subcellular localization predictor. Bioinform. 22, 408–416CrossRefGoogle Scholar
  25. 25.
    Klee EW and Sosa CP (2007) Computational classification of classically secreted proteins. Drug. Discov. Today 12, 234–240PubMedCrossRefGoogle Scholar
  26. 26.
    Klosterman S, et al (2011) Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathog 7: e1002137PubMedCrossRefGoogle Scholar
  27. 27.
    van den Wymelenberg A, et al (2006) Computa-tional analysis of the Phanerochaete chrysosporium v2.0 genome database and mass spectrometry identification of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins. Fungal Genet. Biol. 43, 343–356CrossRefGoogle Scholar
  28. 28.
    Lee SA, et al (2003) An analysis of the Candida albicans genome database for soluble secreted proteins using computer-based prediction algorithms. Yeast 20, 595–610PubMedCrossRefGoogle Scholar
  29. 29.
    Choi J, et al (2010) Fungal secretome database: Integrated platform for annotation of fungal secretomes. BMC Genomics 11, 105–119PubMedCrossRefGoogle Scholar
  30. 30.
    Lum G and Min XJ (2011) FunSecKB: the fungal secretome knowledgebase. Databases (Oxford) 2011, bar001Google Scholar
  31. 31.
    Cantarel BL, et al (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucl. Acid. Res. 37, 233–238CrossRefGoogle Scholar
  32. 32.
    Winnenburg R, et al (2006) PHI-base: a new database for pathogen host interactions. Nucl. Acid. Res. 34, 459–464CrossRefGoogle Scholar
  33. 33.
    Rep M (2005) Small proteins of plant-pathogenic fungi secreted during host colonization. FEMS Microbiol. Lett. 253, 19–27PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Laboratory of PhytopathologyWageningen UniversityWageningenThe Netherlands

Personalised recommendations