Comprehensive Automation for NMR Structure Determination of Proteins

Part of the Methods in Molecular Biology book series (MIMB, volume 831)


This chapter gives an overview of automated protein structure determination by nuclear magnetic resonance (NMR) with the UNIO protocol that enables high to full automation of all NMR data analysis steps involved. Four established algorithms, namely, the MATCH algorithm for sequence-specific resonance assignment, the ASCAN algorithm for side-chain resonance assignment, the CANDID algorithm for NOE assignment, and the ATNOS algorithm for signal identification in NMR spectra, are assembled into three principal UNIO NMR data analysis components (MATCH, ATNOS/ASCAN, and ATNOS/CANDID) that are accessed thanks to a particularly intuitive and flexible, yet powerful graphical user interface (GUI). UNIO is designed to work independently or in association with other NMR software. The principal data analysis components for sequence-specific backbone, side-chain and NOE assignment may be run separately or out of sequence. User-intervention at individual stages is encouraged and facilitated by graphical tools included for the preparation, analysis, validation, and subsequent presentation of the NMR structure.

Key words

Protein structure NMR structure determination Resonance assignment NOE assignment Automated NMR structure determination MATCH ASCAN ATNOS CANDID UNIO protocol 


  1. 1.
    Billeter, M., Wagner, G., and Wüthrich, K. (2008) Solution NMR structure determination of proteins revisited. J. Biomol. NMR 42, 155–158.PubMedCrossRefGoogle Scholar
  2. 2.
    Williamson, M. P., and Craven, C. J. (2009) Automated protein structure calculation from NMR data. J. Biomol. NMR 43, 131–143.PubMedCrossRefGoogle Scholar
  3. 3.
    Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids. Wiley, New York.Google Scholar
  4. 4.
    Altieri, A. S., and Byrd, R. A. (2004) Automation of NMR structure determination of proteins. Curr. Opin. Struct. Biol. 14, 547–553.PubMedCrossRefGoogle Scholar
  5. 5.
    Baran, M. C., Huang, Y. J., Moseley, H. N. B., and Montelione, G. T. (2004) Automated analysis of protein NMR assignments and structures. Chem. Rev. 104, 3541–3555.PubMedCrossRefGoogle Scholar
  6. 6.
    Huang, Y. P. J., Moseley, H. N. B., Baran, M. C., Arrowsmith, C., Powers, R., Tejero, R., et al. (2005) An integrated platform for automated analysis of protein NMR structures. Methods Enzymol. 394, 111–141.PubMedCrossRefGoogle Scholar
  7. 7.
    Gronwald, W., and Kalbitzer, H. R. (2004) Automated structure determination of proteins by NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 44, 33–96.CrossRefGoogle Scholar
  8. 8.
    Güntert, P. (2009) Automated structure determination from NMR spectra. Eur. Biophys. J. 38, 129–143.PubMedCrossRefGoogle Scholar
  9. 9.
    Kraulis, P. J. (1989) Ansig - a Program for the Assignment of Protein H-1 2d-Nmr Spectra by Interactive Computer-Graphics. J. Magn. Reson. 84, 627–633.Google Scholar
  10. 10.
    Johnson, B. A., and Blevins, R. A. (1994) Nmr View - a Computer-Program for the Visualization and Analysis of Nmr Data. J. Biomol. NMR 4, 603–614.CrossRefGoogle Scholar
  11. 11.
    Bartels, C., Xia, T. H., Billeter, M., Güntert, P., and Wüthrich, K. (1995) The Program Xeasy for Computer-Supported Nmr Spectral-Analysis of Biological Macromolecules. J. Biomol. NMR 6, 1–10.CrossRefGoogle Scholar
  12. 12.
    Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) Nmrpipe - a Multidimensional Spectral Processing System Based on Unix Pipes. J. Biomol. NMR 6, 277–293.PubMedCrossRefGoogle Scholar
  13. 13.
    Neidig, K. P., Geyer, M., Gorler, A., Antz, C., Saffrich, R., Beneicke, W., et al. (1995) Aurelia, a Program for Computer-Aided Analysis of Multidimensional Nmr-Spectra. J. Biomol. NMR 6, 255–270.CrossRefGoogle Scholar
  14. 14.
    Goddard, T. D., and Kneller, D. G. (2001) SPARKY 3. University of Californai, San Francisco.Google Scholar
  15. 15.
    Keller, R. L. J. (2004) Optimizing the process of nuclear magnetic resonance spectrum analysis and computer aided resonance assignment. Ph.D. thesis. Diss. ETH Nr. 15947. ETH Zurich, Zurich, Switzerland. Google Scholar
  16. 16.
    Kobayashi, N., Iwahara, J., Koshiba, S., Tomizawa, T., Tochio, N., Güntert, P., et al. (2007) KUJIRA, a package of integrated modules for systematic and interactive analysis of NMR data directed to high-throughput NMR structure studies. J. Biomol. NMR 39, 31–52.PubMedCrossRefGoogle Scholar
  17. 17.
    Mumenthaler, C., Güntert, P., Braun, W., and Wüthrich, K. (1997) Automated combined assignment of NOESY spectra and three-dimensional protein structure determination. J. Biomol. NMR 10, 351–362.PubMedCrossRefGoogle Scholar
  18. 18.
    Gronwald, W., Moussa, S., Elsner, R., Jung, A., Ganslmeier, B., Trenner, J., et al. (2002) Automated assignment of NOESY NMR spectra using a knowledge based method (KNOWNOE). J. Biomol. NMR 23, 271–287.PubMedCrossRefGoogle Scholar
  19. 19.
    Herrmann, T., Güntert, P., and Wüthrich, K. (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 319, 209–227.PubMedCrossRefGoogle Scholar
  20. 20.
    Linge, J. P., Habeck, M., Rieping, W., and Nilges, M. (2003) ARIA: automated NOE assignment and NMR structure calculation. Bioinformatics 19, 315–316.PubMedCrossRefGoogle Scholar
  21. 21.
    Kuszewski, J., Schwieters, C. D., Garrett, D. S., Byrd, R. A., Tjandra, N., and Clore, G. M. (2004) Completely automated, highly error-tolerant macromolecular structure determination from multidimensional nuclear overhauser enhancement spectra and chemical shift assignments. J. Am. Chem. Soc. 126, 6258–6273.PubMedCrossRefGoogle Scholar
  22. 22.
    Huang, Y. J., Tejero, R., Powers, R., and Montelione, G. T. (2006) A topology-constrained distance network algorithm for protein structure determination from NOESY data. Methods Enzymol 62, 587–603.Google Scholar
  23. 23.
    Güntert, P. (2003) Automated NMR protein structure calculation. Prog. Nucl. Magn. Reson. Spectrosc. 43, 105–125.CrossRefGoogle Scholar
  24. 24.
    Bernstein, R., Cieslar, C., Ross, A., Oschkinat, H., Freund, J., and Holak, T. A. (1993) Computer-Assisted Assignment of Multidimensional Nmr-Spectra of Proteins - Application to 3d Noesy-Hmqc and Tocsy-Hmqc Spectra. J. Biomol. NMR 3, 245–251.CrossRefGoogle Scholar
  25. 25.
    Olson, J. B., and Markley, J. L. (1994) Evaluation of an Algorithm for the Automated Sequential Assignment of Protein Backbone Resonances - a Demonstration of the Connectivity Tracing Assignment Tools (Contrast) Software Package. J. Biomol. NMR 4, 385–410.PubMedCrossRefGoogle Scholar
  26. 26.
    Lukin, J. A., Gove, A. P., Talukdar, S. N., and Ho, C. (1997) Automated probabilistic method for assigning backbone resonances of (C-13,N-15)-labeled proteins. J. Biomol. NMR 9, 151–166.PubMedCrossRefGoogle Scholar
  27. 27.
    Bartels, C., Güntert, P., Billeter, M., and Wüthrich, K. (1997) GARANT - A general algorithm for resonance assignment of ­multidimensional nuclear magnetic resonance spectra. J. Comput. Chem. 18, 139–149.CrossRefGoogle Scholar
  28. 28.
    Choy, W. Y., Sanctuary, B. C., and Zhu, G. (1997) Using neural network predicted secondary structure information in automatic protein NMR assignment. J. Chem. Inf. Comput. Sci. 37, 1086–1094.PubMedCrossRefGoogle Scholar
  29. 29.
    Buchler, N. E. G., Zuiderweg, E. R. P., Wang, H., and Goldstein, R. A. (1997) Protein NMR assignments using mean-field simulated annealing. Biophys. J. 72, Wp447–Wp447.Google Scholar
  30. 30.
    Croft, D., Kemmink, J., Neidig, K. P., and Oschkinat, H. (1997) Tools for the automated assignment of high-resolution three-dimensional protein NMR spectra based on pattern recognition techniques. J. Biomol. NMR 10, 207–219.PubMedCrossRefGoogle Scholar
  31. 31.
    Zimmerman, D. E., Kulikowski, C. A., Huang, Y. P., Feng, W. Q., Tashiro, M., Shimotakahara, S., et al. (1997) Automated analysis of protein NMR assignments using methods from artificial intelligence. J. Mol. Biol. 269, 592–610.PubMedCrossRefGoogle Scholar
  32. 32.
    Gronwald, W., Willard, L., Jellard, T., Boyko, R. E., Rajarathnam, K., Wishart, D. S., et al. (1998) CAMRA: Chemical shift based computer aided protein NMR assignments. J. Biomol. NMR 12, 395–405.PubMedCrossRefGoogle Scholar
  33. 33.
    Leutner, M., Gschwind, R. M., Liermann, J., Schwarz, C., Gemmecker, G., and Kessler, H. (1998) Automated backbone assignment of labeled proteins using the threshold accepting algorithm. J. Biomol. NMR 11, 31–43.PubMedCrossRefGoogle Scholar
  34. 34.
    Moseley, H. N. B., Monleon, D., and Montelione, G. T. (2001) Automatic determination of protein backbone resonance assignments from triple resonance nuclear magnetic resonance data. Nuc. Magn. Reson. Biol. Macromol. 339, 91–108.CrossRefGoogle Scholar
  35. 35.
    Coggins, B. E., and Zhou, P. (2003) PACES: Protein sequential assignment by computer-assisted exhaustive search. J. Biomol. NMR 26, 93–111.PubMedCrossRefGoogle Scholar
  36. 36.
    Malmodin, D., Papavoine, C. H. M., and Billeter, M. (2003) Fully automated sequence-specific resonance assignments of heteronuclear protein spectra. J. Biomol. NMR 27, 69–79.PubMedCrossRefGoogle Scholar
  37. 37.
    Hitchens, T. K., Lukin, J. A., Zhan, Y. P., McCallum, S. A., and Rule, G. S. (2003) MONTE: An automated Monte Carlo based approach to nuclear magnetic resonance assignment of proteins. J. Biomol. NMR 25, 1–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Moseley, H. N. B., Riaz, N., Aramini, J. M., Szyperski, T., and Montelione, G. T. (2004) A generalized approach to automated NMR peak list editing: application to reduced dimensionality triple resonance spectra. J. Magn. Reson. 170, 263–277.PubMedCrossRefGoogle Scholar
  39. 39.
    Eghbalnia, H. R., Bahrami, A., Wang, L. Y., Assadi, A., and Markley, J. L. (2005) Probabilistic identification of spin systems and their assignments including coil-helix inference as output (PISTACHIO). J. Biomol. NMR 32, 219–233.PubMedCrossRefGoogle Scholar
  40. 40.
    Lin, H. N., Wu, K. P., Chang, J. M., Sung, T. Y., and Hsu, W. L. (2005) GANA - a genetic algorithm for NMR backbone resonance assignment. Nucleic Acids Res. 33, 4593–4601.PubMedCrossRefGoogle Scholar
  41. 41.
    Masse, J. E., Keller, R., and Pervushin, K. (2006) SideLink: Automated side-chain assignment of biopolymers from NMR data by relative-hypothesis-prioritization-based simulated logic. J. Magn. Reson. 181, 45–67.PubMedCrossRefGoogle Scholar
  42. 42.
    Masse, J. E., and Keller, R. (2005) AutoLink: Automated sequential resonance assignment of biopolymers from NMR data by relative-hypothesis-prioritization-based simulated logic. J. Magn. Reson. 174, 133–151.PubMedCrossRefGoogle Scholar
  43. 43.
    Wang, J. Y., Wang, T. Z., Zuiderweg, E. R. P., and Crippen, G. M. (2005) CASA: An efficient automated assignment of protein mainchain NMR data using an ordered tree search algorithm. J. Biomol. NMR 33, 261–279.PubMedCrossRefGoogle Scholar
  44. 44.
    Kamisetty, H., Bailey-Kellogg, C., and Pandurangan, G. (2006) An efficient randomized algorithm for contact-based NMR backbone resonance assignment. Bioinformatics 22, 172–180.PubMedCrossRefGoogle Scholar
  45. 45.
    Vitek, O., Bailey-Kellogg, C., Craig, B., and Vitek, J. (2006) Inferential backbone assignment for sparse data. J. Biomol. NMR 35, 187–208.PubMedCrossRefGoogle Scholar
  46. 46.
    Wu, K. P., Chang, J. M., Chen, J. B., Chang, C. F., Wu, W. J., Huang, T. H., et al. (2006) RIBRA - An error-tolerant algorithm for the NMR backbone assignment problem. J. Comput. Biol. 13, 229–244.PubMedCrossRefGoogle Scholar
  47. 47.
    Volk, J., Herrmann, T., and Wüthrich, K. (2008) Automated sequence-specific protein NMR assignment using the memetic algorithm MATCH. J. Biomol. NMR 41, 127–138.PubMedCrossRefGoogle Scholar
  48. 48.
    Fiorito, F., Herrmann, T., Damberger, F. F., and Wüthrich, K. (2008) Automated amino acid side-chain NMR assignment of proteins using C-13- and N-15-resolved 3D [H-1,H-1]-NOESY. J. Biomol. NMR 42, 23–33.PubMedCrossRefGoogle Scholar
  49. 49.
    Neidig, K. P., Saffrich, R., Lorenz, M., and Kalbitzer, H. R. (1990) Cluster-Analysis and Multiplet Pattern-Recognition in 2-Dimensional Nmr-Spectra. J. Magn. Reson. 89, 543–552.Google Scholar
  50. 50.
    Garrett, D. S., Powers, R., Gronenborn, A. M., and Clore, G. M. (1991) A Common-Sense Approach to Peak Picking in 2-Dimensional, 3-Dimensional, and 4-Dimensional Spectra Using Automatic Computer-Analysis of Contour Diagrams. J. Magn. Reson. 95, 214–220.Google Scholar
  51. 51.
    Carrara, E. A., Pagliari, F., and Nicolini, C. (1993) Neural Networks for the Peak-Picking of Nuclear-Magnetic-Resonance Spectra. Neural Networks 6, 1023–1032.CrossRefGoogle Scholar
  52. 52.
    Antz, C., Neidig, K. P., and Kalbitzer, H. R. (1995) A General Bayesian Method for an Automated Signal Class Recognition in 2d Nmr-Spectra Combined with a Multivariate Discriminant-Analysis. J. Biomol. NMR 5, 287–296.CrossRefGoogle Scholar
  53. 53.
    Koradi, R., Billeter, M., Engeli, M., Güntert, P., and Wüthrich, K. (1998) Automated peak picking and peak integration in macromolecular NMR spectra using AUTOPSY. J. Magn. Reson. 135, 288–297.PubMedCrossRefGoogle Scholar
  54. 54.
    Herrmann, T., Güntert, P., and Wüthrich, K. (2002) Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. J. Biomol. NMR 24, 171–189.PubMedCrossRefGoogle Scholar
  55. 55.
    Dancea, F., and Gunther, U. (2005) Automated protein NMR structure determination using wavelet de-noised NOESY spectra. J. Biomol. NMR 33, 139–152.PubMedCrossRefGoogle Scholar
  56. 56.
    Brünger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., et al. (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Cryst. D 54, 905–921.CrossRefGoogle Scholar
  57. 57.
    Schwieters, C. D., Kuszewski, J. J., Tjandra, N., and Clore, G. M. (2003) The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65–73.PubMedCrossRefGoogle Scholar
  58. 58.
    Güntert, P., Mumenthaler, C., and Wüthrich, K. (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298.PubMedCrossRefGoogle Scholar
  59. 59.
    Doreleijers, J. F., Mading, S., Maziuk, D., Sojourner, K., Yin, L., Zhu, J., et al. (2003) BioMagResBank database with sets of experimental NMR constraints corresponding to the structures of over 1400 biomolecules deposited in the Protein Data Bank. J. Biomol. NMR 26, 139–146.PubMedCrossRefGoogle Scholar
  60. 60.
    Hiller, S., Wider, G., and Wüthrich, K. (2008) APSY-NMR with proteins: practical aspects and backbone assignment. J. Biomol. NMR 42, 179–195.PubMedCrossRefGoogle Scholar
  61. 61.
    Hiller, S., Fiorito, F., Wüthrich, K., and Wider, G. (2005) Automated projection spectroscopy (APSY). Proc. Natl. Acad. Sci. USA 102, 10876–10881.PubMedCrossRefGoogle Scholar
  62. 62.
    Güntert, P., and Wüthrich, K. (1992) Flatt - a New Procedure for High-Quality Base-Line Correction of Multidimensional Nmr-Spectra. J. Magn. Reson. 96, 403–407.Google Scholar
  63. 63.
    Nilges, M. (1995) Calculation of Protein Structures with Ambiguous Distance Restraints - Automated Assignment of Ambiguous Noe Crosspeaks and Disulfide Connectivities. J. Mol. Biol. 245, 645–660.PubMedCrossRefGoogle Scholar
  64. 64.
    Kuszewski, J. J., Thottungal, R. A., Clore, G. M., and Schwieters, C. D. (2008) Automated error-tolerant macromolecular structure determination from multidimensional nuclear Overhauser enhancement spectra and chemical shift assignments: improved robustness and performance of the PASD algorithm. J. Biomol. NMR 41, 221–239.PubMedCrossRefGoogle Scholar
  65. 65.
    Schwieters, C. D., Kuszewski, J. J., and Clore, G. M. (2006) Using Xplor-NIH for NMR molecular structure determination. Prog. Nucl. Magn. Reson. Spectrosc. 48, 47–62.CrossRefGoogle Scholar
  66. 66.
    Fiorito, F., Hiller, S., Wider, G., and Wüthrich, K. (2006) Automated resonance assignment of proteins: 6D APSY-NMR. J. Biomol. NMR 35, 27–37.PubMedCrossRefGoogle Scholar
  67. 67.
    Nilges, M. (1993) A Calculation Strategy for the Structure Determination of Symmetrical Dimers by H-1-Nmr. Proteins 17, 297–309.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Centre Européen de RMN à très Hauts ChampsUniversité de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Université ClaudeVilleurbanneFrance
  2. 2.Centre Européen de RMN à très Hauts ChampsUniversité de Lyon, CNRS, Ecole Normale Supérieure de Lyon, Université ClaudeVilleurbanneFrance

Personalised recommendations