Isotopic Labeling of Heterologous Proteins in the Yeast Pichia pastoris and Kluyveromyces lactis

  • Toshihiko Sugiki
  • Osamu Ichikawa
  • Mayumi Miyazawa-Onami
  • Ichio Shimada
  • Hideo Takahashi
Part of the Methods in Molecular Biology book series (MIMB, volume 831)


Several protein expression systems are available for the preparation of stable isotope-labeled recombinant proteins for NMR studies. Yeast expression systems have several advantages over prokaryotic systems, such as the widely used Escherichia coli expression system. Protein expression using the methylotrophic yeast Pichia pastoris is commonly employed for the preparation of isotope-labeled proteins. Recently, the hemiascomycete yeast Kluyveromyces lactis expression system was reported as being useful for preparing proteins for NMR studies. Since each yeast expression system has different features, their applications have increased in number. In this chapter, we describe procedures for the efficient production of uniformly isotope-labeled proteins using the P. pastoris and the K. lactis yeast expression systems.

Key words

Yeast expression systems Pichia pastoris Kluyveromyces lactis Stable isotope labeling Fed-batch fermentation NMR 



This work was financially supported in part by the Ministry of Economy, Trade and Industry (METI) and the New Energy and Industrial Technology Development Organization (NEDO).


  1. 1.
    Cregg, J. M., Vedvick, T. S., and Raschke, W. C. (1993) Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnology 11, 905–910.Google Scholar
  2. 2.
    Pickford, A. R., and O’Leary, J. M. (2008) Isotopic labeling of recombinant proteins from the methylotrophic yeast Pichia pastoris, in Methods in Molecular Biology (Downing, A. K., Ed.), vol. 278, pp. 17–33, Humana Press, Totowa, NJ.Google Scholar
  3. 3.
    Lin Cereghino, G. P., Cereghino, J. L., Ilgen, C., and Cregg, J. M. (2002) Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr. Opin. Biotechnol. 13, 329–332.Google Scholar
  4. 4.
    Daley, R., and Hearn, M. T. (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J. Mol. Recognit. 18, 119–138.Google Scholar
  5. 5.
    Cos, O., Ramόn, R., Montesinos, J. L., and Valero F. (2006) Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: A review. Microbial Cell Factories 5, 17–36.Google Scholar
  6. 6.
    Takahashi, H., and Shimada, I. (2010) Production of isotopically labeled heterologous proteins in non-E. coli prokaryotic cells. J. Biomol. NMR 46, 3–10.Google Scholar
  7. 7.
    Invitrogen Corporation. EasySelectPichia Expression Kit: A manual of methods for expression of recombinant proteins using pPICZ and pPICZα in Pichia pastoris, Version I. Available at
  8. 8.
    Laroche, Y., Strome, V., De Meutter, J., Messens, J., and Lauwereys, M. (1994) High-level secretion and very efficient isotopic labeling of tick anticoagulant peptide (TAP) expressed in the methylotrophic yeast, Pichia pastoris. Bio/Technol 12, 1119–1124.Google Scholar
  9. 9.
    Denton, H., Smith, M., Husi, H., Uhrin, D., Barlow, P. N., Batt, C. A., and Sawyer, L. (1998) Isotopically labeled bovine β-lactoglobulin for NMR studies expressed in Pichia pastoris. Protein Expr. Purif. 14, 97–103.Google Scholar
  10. 10.
    Wood, M. J., and Komives, E. A. (1999) Production of large quantities of isotopically labeled protein in Pichia pastoris by fermentation.. J. Biomol. NMR 13, 149–159.Google Scholar
  11. 11.
    Mine, S., Ueda, T., Hashimoto, Y., Tanaka, Y., and Imoto, T. (1999) High-level expression of uniformly 15N-labeled hen lysozyme in Pichia pastoris and identification of the site in hen lysozyme where phosphate ion binds using NMR measurements. FEBS Lett. 448, 33–37.Google Scholar
  12. 12.
    van den Burg, H. A., de Wit, P. J., and Vervoort, J. (2001) Efficient 13C/15N double labeling of the avirulence protein AVR4 in a methanol-utilizing strain (Mut+) of Pichia pastoris. J. Biomol. NMR 20, 251–261.Google Scholar
  13. 13.
    Rodriguez, E., and Krishna, N. R. (2001) An economical method for 13C/15N isotopic labeling of proteins expressed in Pichia pastoris. J. Biochem. 130, 19–22.Google Scholar
  14. 14.
    Morgan, W. D., Kragt, A., and Feeney, J. (2000) Expression of deuterium-isotope-labelled protein in the yeast Pichia pastoris for NMR study. J. Biomol. NMR 17, 337–347.Google Scholar
  15. 15.
    Ichikawa, M., Osawa, M., Nishida, N., Goshima, N., Nomura, N., and Shimada, I. (2007) Structural basis of the collagen-binding mode of discoidin domain receptor 2, EMBO J. 26, 4168–4176.Google Scholar
  16. 16.
    New England Biolabs, Inc. K. lactis Protein Expression Kit: Instruction manual. Available at
  17. 17.
    Colussi, P. A., and Taron, C. H. (2005) Kluyveromyces lactis LAC4 promoter variants that lack function in bacteria but retain full function in K. lactis, Appl. Environ. Microbiol. 71, 7092–7098.Google Scholar
  18. 18.
    Read, J. D., Colussi, P. A., Ganatra, M. B., and Taron, C. H. (2007) Acetamide selection of Kluyveromyces lactis cells transformed with an integrative vector leads to high-frequency formation of multicopy strains. Appl. Environ. Microbiol. 73, 5088–5096.Google Scholar
  19. 19.
    Sugiki, T., Shimada, I., and Takahashi, H. (2008) Stable isotope labeling of protein by Kluyveromyces lactis for NMR study. J. Biomol. NMR 42, 159–162.Google Scholar
  20. 20.
    Invitrogen Corporation. Pichia Fermentation Process Guidelines. Available at
  21. 21.
    Takahashi, H., Nakanishi, T., Kami, K., Arata, Y., and Shimada, I. (2000) A novel NMR method for determining the interface of large protein-protein complexes. Nat. Struct. Biol. 7, 220–223.Google Scholar
  22. 22.
    Nakanishi, T., Miyazawa, M., Sakakura, M., Terasawa, H., Takahashi, H., and Shimada, I. (2002) Determination of the interface of a large protein complex by transferred cross-saturation measurements. J. Mol. Biol. 318, 245–249.Google Scholar
  23. 23.
    Takahashi, H., Miyazawa, M., Ina, Y., Fukunishi, Y., Mizukoshi, Y., Nakamura, H., and Shimada, I. (2006) Utilization of methyl proton resonances in cross-saturation measurement for determining the interfaces of large protein-protein complexes. J. Biomol. NMR 34, 167–177.Google Scholar
  24. 24.
    Shimada, I., Ueda, T., Matsumoto, M., Sakakura, M., Osawa, M., Takeuchi, K., Nishida, N., and Takahashi, H. (2008) Cross-saturation and transferred cross-saturation experiments. Prog. Nucl. Magn. Reson. Spectrosc. 54, 123–140.Google Scholar
  25. 25.
    Koch, V., Rüffer, H.-M., Schügerl, K., Innertsberger, E., Menzel, H., and Weis, J. (1995) Effect of antifoam agents on the medium and microbial cell properties and process performance in small and large reactors. Process Biochem. 30, 435–446.Google Scholar
  26. 26.
    Macauley-Patrick, S., Fazenda, M. L., McNeil, B., and Harvey, L. M. (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22, 249–270.Google Scholar
  27. 27.
    Shapiro, R. I., Wen, D., Levesque, M., Hronowski, X., Gill, A., Garber, E. A., Galdes, A., Strauch, K. L., and Taylor, F. R. (2003) Expression of sonic hedgehog-Fc fusion protein in Pichia pastoris. Identification and control of post-translational, chemical, and proteolytic modifications. Protein Expr. Purif. 29, 272–283.Google Scholar
  28. 28.
    Files, D., Ogawa, M., Scaman, C. H., and Baldwin, S. A. (2001) A Pichia pastoris fermentation process for producing high-levels of recombinant human cystatin-C. Enzyme Microbial Technol. 29, 335–340.Google Scholar
  29. 29.
    Zhang, W., Hywood Potter K. J., Plantz, B. A., Schlegel, V. L., Smith, L. A., and Meagher, M. M. (2003) Pichia pastoris fermentation with mixed-feeds of glycerol and methanol: growth kinetics and production improvement. J. Ind. Microbiol. Biotechnol. 30, 210–215.Google Scholar
  30. 30.
    Xie, J., Zhang, L., Ye, Q., Zhou, Q., Xin, L., Du, P., and Gan, R. (2003) Angiostatin production in cultivation of recombinant Pichia pastoris fed with mixed carbon sources. Biotechnol. Lett. 25, 173–177.Google Scholar
  31. 31.
    McGrew, J. T., Leiske, D., Dell, B., Klinke, R., Krasts, D., Wee, S. F., Abbott, N., Armitage, R., and Harrington, K. (1997) Expression of trimeric CD40 ligand in Pichia pastoris: use of a rapid method to detect high-level expressing transformants. Gene 187, 193–200.Google Scholar
  32. 32.
    d’Anjou, M. C., and Daugulis, A. J. (2001) A rational approach to improving productivity in Pichia pastoris fermentation. Biotechnol. Bioeng 72, 1–11.Google Scholar
  33. 33.
    Cai, M., Huang, Y., Sakaguchi, K., Clore, G. M., Gronenborn, A. M., and Craigie, R. (1998) An efficient and cost-effective isotope labeling protocol for proteins expressed in Escherichia coli. J. Biomol. NMR 11, 97–102.Google Scholar
  34. 34.
    Zhang, Y., Liu, R., and Wu, X. (2007) The proteolytic systems and heterologous proteins degradation in the methylotrophic yeast Pichia pastoris. Annal. Microbiol. 57, 553–560.Google Scholar
  35. 35.
    Li, Z., Xiong, F., Lin, Q., d’Anjou, M., Daugulis, A. J., Yang, D. S., and Hew, C. L. (2001) Low-temperature increases the yield of biological active herring antifreeze protein in Pichia pastoris. Protein Expr. Purif. 21, 438–445.Google Scholar
  36. 36.
    Jahic, M., Gustavsson, M., Jansen, A.-K., Martinelle, M., and Enfors, S.-O. (2003) Analysis and control of proteolysis of a fusion protein in Pichia pastoris fed-batch processes. J. Biotechnol. 102, 45–53.Google Scholar
  37. 37.
    Jahic, M., Wallberg, F., Bollok, M., Garcia, P., and Enfors, S.-O. (2003) Temperature limited fed-batch technique for control of proteolysis in Pichia pastoris bioreactor cultures. Microbial Cell Factories 2, 6–17.Google Scholar
  38. 38.
    Surribas, A., Stahn, R., Montesinos, J. L., Enfors, S.-O., Valero, F., and Jahic, M. (2007) Production of Rhizopus oryzae lipase from Pichia pastoris using alternative operational strategies. J. Biotechnol. 130, 291–299.Google Scholar
  39. 39.
    Shi, X., Karkut T., Chamankhah, M., Alting-Mees, M., Hemmingsen, S. M., and Hegedus, D. (2003) Optimal conditions for the expression of a single-chain antibody (scFv) gene in Pichia pastoris. Protein Expr. Purif. 28, 321–330.Google Scholar
  40. 40.
    Yao, X. Q., Zhao, H. L., Xue, C., Zhang, W., Xiong, X. H., Wang, Z. W., Li, X. Y., and Liu, Z. M. (2009) Degradation of HSA-AX15(R13K) when expressed in Pichia pastoris can be reduced via the disruption of YPS1 gene in this yeast. J. Biotechnol. 139, 131–136.Google Scholar
  41. 41.
    Madduri, K., Badger, M., Li, Z.-S., Xu, X., Thornburgh, S., Evans, S., and Dhadialla, T. S. (2009) Development of stable isotope and selenomethionine labeling methods for proteins expressed in Pseudomonas fluorescens. Protein Expr. Purif. 65, 57–65.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Toshihiko Sugiki
    • 1
    • 2
  • Osamu Ichikawa
    • 3
  • Mayumi Miyazawa-Onami
    • 1
    • 2
  • Ichio Shimada
    • 2
    • 3
  • Hideo Takahashi
    • 2
    • 4
  1. 1.Japan Biological Informatics Consortium (JBiC)TokyoJapan
  2. 2.Biomedicinal Information Research Center (BIRC)National Institute of Advanced Industrial Science and Technology (AIST)TokyoJapan
  3. 3.Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
  4. 4.Department of Supramolecular Biology, Graduate School of NanobioscienceYokohama City UniversityYokohamaJapan

Personalised recommendations