In-Cell NMR Spectroscopy in Escherichia coli

  • Kirsten E. Robinson
  • Patrick N. Reardon
  • Leonard D. SpicerEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 831)


A living cell is a complex system that contains many biological macromolecules and small molecules necessary for survival, in a relatively small volume. It is within this crowded and complex cellular environment that proteins function making in-cell studies of protein structure and binding interactions an exciting and important area of study. Nuclear magnetic resonance (NMR) spectroscopy is a particularly attractive method for in-cell studies of proteins since it provides atomic-level data noninvasively in solution. In addition, NMR has recently undergone significant advances in instrumentation to increase sensitivity and in methods development to reduce data acquisition times for multidimensional experiments. Thus, NMR spectroscopy lends itself to studying proteins within a living cell, and recently “in-cell NMR” studies have been reported from several laboratories. To date, this technique has been successfully applied in Escherichia coli (E. coli), Xenopus laevis (X. laevis) oocytes, and HeLa host cells. Demonstrated applications include protein assignment as well as de novo 3D protein structure determination. The most common use, however, is to probe binding interactions and structural modifications directly from proton nitrogen correlation spectra. E. coli is the most extensively used cell type thus far and this chapter is largely confined to reviewing recent literature and describing methods and detailed protocols for in-cell NMR studies in this bacterial cell.

Key words

In-cell NMR spectroscopy Protein NMR spectroscopy Escherichia coli Fast NMR spectroscopy 



The authors wish to thank Dr. Ronald A. Venters and Dr. Brian E. Coggins for their useful discussions and comments on this manuscript.


  1. 1.
    Dobson, C. M. (2004) Chemical space and biology. Nature 432, 824–828.PubMedCrossRefGoogle Scholar
  2. 2.
    Goto, S., Okuno, Y., Hattori, M., Nishioka, T., and Kanehisa, M. (2002) LIGAND: database of chemical compounds and reactions in biological pathways. Nucl. Acids Res. 30, 402–404.PubMedCrossRefGoogle Scholar
  3. 3.
    Lander, E. S., et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.PubMedCrossRefGoogle Scholar
  4. 4.
    Goodsell, D. S. (1991) Inside a living cell. Trends Biochem. Sci. 16, 203–206.PubMedCrossRefGoogle Scholar
  5. 5.
    Ellis, R. J., and Minton, A. P. (2003) Cell biology: join the crowd. Nature 425, 27–28.PubMedCrossRefGoogle Scholar
  6. 6.
    Hall, D., and Minton, A. P. (2003) Macromolecular crowding: qualitative and semiquantitative successes, quantitative challenges. Biochim. Biophys. Acta. 1649, 127–139.PubMedGoogle Scholar
  7. 7.
    Burz, D. S., Dutta, K., Cowburn, D., and Shekhtman, A. (2006) Mapping structural interactions using in-cell NMR spectroscopy (STINT-NMR). Nat. Methods 3, 91–93.PubMedCrossRefGoogle Scholar
  8. 8.
    Reardon, P. N., and Spicer, L. D. (2005) Multidimensional NMR spectroscopy for protein characterization and assignment inside cells. J. Am. Chem. Soc. 127, 10848–10849.PubMedCrossRefGoogle Scholar
  9. 9.
    Sakakibara, D., Sasaki, A., Ikeya, T., Hamatsu, J., Hanashima, T., Mishima, M., Yoshimasu, M., Hayashi, N., Mikawa, T., Walchli, M., Smith, B. O., Shirakawa, M., Guntert, P., and Ito, Y. (2009) Protein structure determination in living cells by in-cell NMR spectroscopy. Nature 458, 102–105.PubMedCrossRefGoogle Scholar
  10. 10.
    Ikeya, T., Sasaki, A., Sakakibara, D., Shigemitsu, Y., Hamatsu, J., Hanashima, T., Mishima, M., Yoshimasu, M., Hayashi, N., Mikawa, T., Nietlispach, D., Walchli, M., Smith, B. O., Shirakawa, M., Guntert, P., and Ito, Y. (2010) NMR protein structure determination in living E. coli cells using nonlinear sampling. Nat. Protoc. 5, 1051–1060.PubMedCrossRefGoogle Scholar
  11. 11.
    Augustus, A. M., Reardon, P. N., and Spicer, L. D. (2009) MetJ repressor interactions with DNA probed by in-cell NMR. Proc. Natl. Acad. Sci. USA 106, 5065–5069.PubMedCrossRefGoogle Scholar
  12. 12.
    Hubbard, J. A., MacLachlan, L. K., King, G. W., Jones, J. J., and Fosberry, A. P. (2003) Nuclear magnetic resonance spectroscopy reveals the functional state of the signalling protein CheY in vivo in Escherichia coli. Mol. Microbiol. 49, 1191–1200.PubMedCrossRefGoogle Scholar
  13. 13.
    Xie, J., Thapa, R., Reverdatto, S., Burz, D. S., and Shekhtman, A. (2009) Screening of small molecule interactor library by using in-cell NMR spectroscopy (SMILI-NMR). J. Med. Chem. 52, 3516–3522.PubMedCrossRefGoogle Scholar
  14. 14.
    Serber, Z., Keatinge-Clay, A. T., Ledwidge, R., Kelly, A. E., Miller, S. M., and Dotsch, V. (2001) High-resolution macromolecular NMR spectroscopy inside living cells. J. Am. Chem. Soc. 123, 2446–2447.PubMedCrossRefGoogle Scholar
  15. 15.
    Serber, Z., Straub, W., Corsini, L., Nomura, A. M., Shimba, N., Craik, C. S., Ortiz de Montellano, P., and Dotsch, V. (2004) Methyl groups as probes for proteins and complexes in in-cell NMR experiments. J. Am. Chem. Soc. 126, 7119–7125.PubMedCrossRefGoogle Scholar
  16. 16.
    Tugarinov, V., and Kay, L. E. (2003) Ile, Leu, and Val methyl assignments of the 723-residue malate synthase G using a new labeling strategy and novel NMR methods. J. Am. Chem. Soc. 125, 13868–13878.PubMedCrossRefGoogle Scholar
  17. 17.
    Goto, N. K., Gardner, K. H., Mueller, G. A., Willis, R. C., and Kay, L. E. (1999) A robust and cost-effective method for the production of Val, Leu, Ile (delta 1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J. Biomol. NMR 13, 369–374.PubMedCrossRefGoogle Scholar
  18. 18.
    Li, C., Wang, G. F., Wang, Y., Creager-Allen, R., Lutz, E. A., Scronce, H., Slade, K. M., Ruf, R. A., Mehl, R. A., and Pielak, G. J. (2010) Protein (19)F NMR in Escherichia coli. J. Am. Chem. Soc. 132, 321–327.PubMedCrossRefGoogle Scholar
  19. 19.
    Serber, Z., Ledwidge, R., Miller, S. M., and Dotsch, V. (2001) Evaluation of parameters critical to observing proteins inside living Escherichia coli by in-cell NMR spectroscopy. J. Am. Chem. Soc. 123, 8895–8901.PubMedCrossRefGoogle Scholar
  20. 20.
    Li, C., Charlton, L. M., Lakkavaram, A., Seagle, C., Wang, G., Young, G. B., Macdonald, J. M., and Pielak, G. J. (2008) Differential dynamical effects of macromolecular crowding on an intrinsically disordered protein and a globular protein: implications for in-cell NMR spectroscopy. J. Am. Chem. Soc. 130, 6310–6311.PubMedCrossRefGoogle Scholar
  21. 21.
    Barnes, C. O., and Pielak, G. J. (2010) In-cell protein NMR and protein leakage, Proteins 79, 347–351.Google Scholar
  22. 22.
    Burz, D. S., and Shekhtman, A. (2008) In-cell biochemistry using NMR spectroscopy. PLoS One 3, e2571.PubMedCrossRefGoogle Scholar
  23. 23.
    Dedmon, M. M., Patel, C. N., Young, G. B., and Pielak, G. J. (2002) FlgM gains structure in living cells. Proc. Natl. Acad. Sci. USA 99, 12681–12684.PubMedCrossRefGoogle Scholar
  24. 24.
    McNulty, B. C., Young, G. B., and Pielak, G. J. (2006) Macromolecular crowding in the Esche-richia coli periplasm maintains alpha-synuclein disorder. J. Mol. Biol. 355, 893–897.PubMedCrossRefGoogle Scholar
  25. 25.
    Mandelshtam, V. A., Taylor, H. S., and Shaka, A. J. (1998) Application of the filter diagonalization method to one- and two-dimensional NMR spectra. J. Magn. Reson. 133, 304–312.PubMedCrossRefGoogle Scholar
  26. 26.
    Kupce, E., and Freeman, R. (2003) Fast multi-dimensional NMR of proteins. J. Biomol. NMR 25, 349–354.PubMedCrossRefGoogle Scholar
  27. 27.
    Schanda, P., Kupce, E., and Brutscher, B. (2005) SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J. Biomol. NMR 33, 199–211.PubMedCrossRefGoogle Scholar
  28. 28.
    Kupce, E., and Freeman, R. (2003) Projection-reconstruction of three-dimensional NMR spectra. J. Am. Chem. Soc. 125, 13958–13959.PubMedCrossRefGoogle Scholar
  29. 29.
    Coggins, B. E., Venters, R. A., and Zhou, P. (2004) Generalized reconstruction of n-D NMR spectra from multiple projections: application to the 5-D HACACONH spectrum of protein G B1 domain. J. Am. Chem. Soc. 126, 1000–1001.PubMedCrossRefGoogle Scholar
  30. 30.
    Coggins, B. E., and Zhou, P. (2007) Sampling of the NMR time domain along concentric rings. J. Magn. Reson. 184, 207–221.PubMedCrossRefGoogle Scholar
  31. 31.
    Barna, J. C. J., Laue, E. D., Mayger, M. R., Skilling, J., and Worrall, S. J. P. (1987) Exponential Sampling, an alternative method for sampling in two-dimensional NMR experiments. J. Magn. Reson. 73, 69–77.Google Scholar
  32. 32.
    Hiller, S., Fiorito, F., Wuthrich, K., and Wider, G. (2005) Automated projection spectroscopy (APSY). Proc. Natl. Acad. Sci. USA 102, 10876–10881.PubMedCrossRefGoogle Scholar
  33. 33.
    Eghbalnia, H. R., Bahrami, A., Tonelli, M., Hallenga, K., and Markley, J. L. (2005) High-resolution iterative frequency identification for NMR as a general strategy for multidimensional data collection. J. Am. Chem. Soc. 127, 12528–12536.PubMedCrossRefGoogle Scholar
  34. 34.
    Kupce, E., and Freeman, R. (2004) Projection-reconstruction technique for speeding up multidimensional NMR spectroscopy. J. Am. Chem. Soc. 126, 6429–6440.PubMedCrossRefGoogle Scholar
  35. 35.
    Venters, R. A., Coggins, B. E., Kojetin, D., Cavanagh, J., and Zhou, P. (2005) (4,2)D Projection – reconstruction experiments for protein backbone assignment: application to human carbonic anhydrase II and calbindin D(28 K). J. Am. Chem. Soc. 127, 8785–8795.Google Scholar
  36. 36.
    Coggins, B. E., Venters, R. A., and Zhou, P. (2005) Filtered backprojection for the reconstruction of a high-resolution (4,2)D CH3-NH NOESY spectrum on a 29 kDa protein. J. Am. Chem. Soc. 127, 11562–11563.PubMedCrossRefGoogle Scholar
  37. 37.
    Kupce, E., and Freeman, R. (2003) Recon-struction of the three-dimensional NMR spectrum of a protein from a set of plane projections. J. Biomol. NMR 27, 383–387.PubMedCrossRefGoogle Scholar
  38. 38.
    Coggins, B. E., and Zhou, P. (2006) Polar Fourier transforms of radially sampled NMR data. J. Magn. Reson. 182, 84–95.PubMedCrossRefGoogle Scholar
  39. 39.
    Selenko, P., Serber, Z., Gadea, B., Ruderman, J., and Wagner, G. (2006) Quantitative NMR analysis of the protein G B1 domain in Xenopus laevis egg extracts and intact oocytes. Proc. Natl. Acad. Sci. USA 103, 11904–11909.PubMedCrossRefGoogle Scholar
  40. 40.
    Inomata, K., Ohno, A., Tochio, H., Isogai, S., Tenno, T., Nakase, I., Takeuchi, T., Futaki, S., Ito, Y., Hiroaki, H., and Shirakawa, M. (2009) High-resolution multi-dimensional NMR spectroscopy of proteins in human cells. Nature 458, 106–109.PubMedCrossRefGoogle Scholar
  41. 41.
    Beckman, J. S., and Siedow, J. N. (1985) Bactericidal agents generated by the peroxidase-catalyzed oxidation of para-hydroquinones. J. Biol. Chem. 260, 14604–14609.PubMedGoogle Scholar
  42. 42.
    Sambrook, J., and Russell, D. W., (Eds.) (2001) Molecular Cloning: A Laboratory Manual, Vol. 3, Cold Spring Harbor Laboratory Press, Cold Spring Harbor.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Kirsten E. Robinson
    • 1
  • Patrick N. Reardon
    • 1
  • Leonard D. Spicer
    • 1
    • 2
    Email author
  1. 1.Department of BiochemistryDuke University NMR CenterDurhamUSA
  2. 2.Department of RadiologyDuke University NMR CenterDurhamUSA

Personalised recommendations