NMR Studies of Protein–RNA Interactions

Part of the Methods in Molecular Biology book series (MIMB, volume 831)


This chapter describes the preparation of NMR quantities of RNA purified to single-nucleotide resolution for protein–RNA interaction studies. The protocol is easily modified to make nucleotide-specific isotopically labeled RNAs or uniformly labeled RNA fragments for ligation to generate segmentally labeled RNAs.

Key words

In vitro transcription Single-nucleotide resolution RNA synthesis Protein–RNA interactions RNA purification Isotopic labeling 


  1. 1.
    Autexier, C., and Triki, I. (1999) Tetrahymena telomerase ribonucleoprotein RNA–protein interactions. Nucl. Acids Res. 27, 2227–2234.PubMedCrossRefGoogle Scholar
  2. 2.
    Bachand, F., Triki, I., and Autexier, C. (2001) Human telomerase RNA–protein interactions. Nucl. Acids Res. 29, 3385–3393.PubMedCrossRefGoogle Scholar
  3. 3.
    Greider, C. W., and Blackburn, E. H. (1987) The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51, 887–898.PubMedCrossRefGoogle Scholar
  4. 4.
    Staley, J. P., and Woolford, J. L., Jr. (2009) Assembly of ribosomes and spliceosomes: complex ribonucleoprotein machines. Curr. Opin. Cell Biol. 21, 109–118.PubMedCrossRefGoogle Scholar
  5. 5.
    Ban, N., Nissen, P., Hansen, J., Moore, P. B., and Steitz, T. A. (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289, 905–920.PubMedCrossRefGoogle Scholar
  6. 6.
    Cech, T. R. (2000) Structural biology. The ribosome is a ribozyme, Science 289, 878–879.Google Scholar
  7. 7.
    Schluenzen, F., Tocilj, A., Zarivach, R., Harms, J., Gluehmann, M., Janell, D., Bashan, A., Bartels, H., Agmon, I., Franceschi, F., and Yonath, A. (2000) Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. Cell 102, 615–623.PubMedCrossRefGoogle Scholar
  8. 8.
    Wimberly, B. T., Brodersen, D. E., Clemons, W. M., Jr., Morgan-Warren, R. J., Carter, A. P., Vonrhein, C., Hartsch, T., and Ramakrishnan, V. (2000) Structure of the 30S ribosomal subunit. Nature 407, 327–339.PubMedCrossRefGoogle Scholar
  9. 9.
    Ule, J. (2008) Ribonucleoprotein complexes in neurologic diseases. Current Opinion in Neurobiology 18, 516–523.PubMedCrossRefGoogle Scholar
  10. 10.
    Whittaker, J. W. (2007) Selective isotopic labeling of recombinant proteins using amino acid auxotroph strains. Methods. Mol. Biol. 389, 175–188.PubMedCrossRefGoogle Scholar
  11. 11.
    Cowburn, D., Shekhtman, A., Xu, R., Ottesen, J. J., and Muir, T. W. (2004) Segmental isotopic labeling for structural biological applications of NMR. Methods Mol. Biol. 278, 47–56.PubMedGoogle Scholar
  12. 12.
    Liu, D., Xu, R., and Cowburn, D. (2009) Segmental isotopic labeling of proteins for nuclear magnetic resonance. Methods Enzymol. 462, 151–175.PubMedCrossRefGoogle Scholar
  13. 13.
    Lu, K., Miyazaki, Y., and Summers, M. F. (2010) Isotope labeling strategies for NMR studies of RNA. J. Biomol. NMR 46, 113–125.PubMedCrossRefGoogle Scholar
  14. 14.
    Nelissen, F. H., van Gammeren, A. J., Tessari, M., Girard, F. C., Heus, H. A., and Wijmenga, S. S. (2008) Multiple segmental and selective isotope labeling of large RNA for NMR structural studies. Nucl. Acids Res. 36, e89.PubMedCrossRefGoogle Scholar
  15. 15.
    Peterson, R. D., Theimer, C. A., Wu, H., and Feigon, J. (2004) New applications of 2D filtered/edited NOESY for assignment and structure elucidation of RNA and RNA–protein complexes. J. Biomol. NMR 28, 59–67.PubMedCrossRefGoogle Scholar
  16. 16.
    Milligan, J. F., Groebe, D. R., Witherell, G. W., and Uhlenbeck, O. C. (1987) Oligoribo-nucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucl. Acids Res. 15, 8783–8798.PubMedCrossRefGoogle Scholar
  17. 17.
    Cazenave, C., and Uhlenbeck, O. C. (1994) RNA template-directed RNA synthesis by T7 RNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 91, 6972–6976.PubMedCrossRefGoogle Scholar
  18. 18.
    Pleiss, J. A., Derrick, M. L., and Uhlenbeck, O. C. (1998) T7 RNA polymerase produces 5′ end heterogeneity during in vitro transcription from certain templates. RNA 4, 1313–1317.PubMedCrossRefGoogle Scholar
  19. 19.
    Triana-Alonso, F. J., Dabrowski, M., Wadzack, J., and Nierhaus, K. H. (1995) Self-coded 3′-extension of run-off transcripts produces aberrant products during in vitro transcription with T7 RNA polymerase. J. Biol. Chem. 270, 6298–6307.PubMedCrossRefGoogle Scholar
  20. 20.
    Kao, C., Rudisser, S., and Zheng, M. (2001) A simple and efficient method to transcribe RNAs with reduced 3′ heterogeneity. Methods 23, 201–205.PubMedCrossRefGoogle Scholar
  21. 21.
    Kao, C., Zheng, M., and Rudisser, S. (1999) A simple and efficient method to reduce nontemplated nucleotide addition at the 3 terminus of RNAs transcribed by T7 RNA polymerase. RNA 5, 1268–1272.PubMedCrossRefGoogle Scholar
  22. 22.
    Nacheva, G. A., and Berzal-Herranz, A. (2003) Preventing nondesired RNA-primed RNA extension catalyzed by T7 RNA polymerase. Eur. J. Biochem./FEBS 270, 1458–1465.Google Scholar
  23. 23.
    Cunningham, P. R., and Ofengand, J. (1990) Use of inorganic pyrophosphatase to improve the yield of in vitro transcription reactions catalyzed by T7 RNA polymerase. BioTechniques 9, 713–714.PubMedGoogle Scholar
  24. 24.
    Gardner, K. H., and Kay, L. E. (1998) The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Ann. Rev. Biophys. Biomol. Struct. 27, 357–406.CrossRefGoogle Scholar
  25. 25.
    Marley, J., Lu, M., and Bracken, C. (2001) A method for efficient isotopic labeling of recombinant proteins. J. Biomol. NMR 20, 71–75.PubMedCrossRefGoogle Scholar
  26. 26.
    Wu, H., Finger, L. D., and Feigon, J. (2005) Structure determination of protein/RNA complexes by NMR. Methods Enzymol. 394, 525–545.PubMedCrossRefGoogle Scholar
  27. 27.
    Marenchino, M., Armbruster, D. W., and Hennig, M. (2009) Rapid and efficient purification of RNA-binding proteins: application to HIV-1 Rev. Protein Expression and Purification 63, 112–119.PubMedCrossRefGoogle Scholar
  28. 28.
    Khanna, M., Wu, H., Johansson, C., Caizergues-Ferrer, M., and Feigon, J. (2006) Structural study of the H/ACA snoRNP components Nop10p and the 3′ hairpin of U65 snoRNA. RNA 12, 40–52.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Carla A. Theimer
    • 1
  • Nakesha L. Smith
    • 1
  • May Khanna
    • 2
  1. 1.Department of ChemistryUniversity at Albany SUNYAlbanyUSA
  2. 2.Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisUSA

Personalised recommendations