Chromatin Remodeling pp 103-113

Part of the Methods in Molecular Biology book series (MIMB, volume 833)

Generation of DNA Circles in Yeast by Inducible Site-Specific Recombination



Site-specific recombinases have been harnessed for a variety of genetic manipulations involving the gain, loss, or rearrangement of genomic DNA in a variety of organisms. The enzymes have been further exploited in the model eukaryote Saccharomyces cerevisiae for mechanistic studies involving chromosomal context. In these cases, a chromosomal element of interest is converted into a DNA circle within living cells, thereby uncoupling the element from neighboring regulatory sequences, obligatory chromosomal events, and other context-dependent effects that could alter or mask intrinsic functions of the element. In this chapter, I discuss general considerations in using site-specific recombination to create DNA circles in yeast and the specific application of the R recombinase.

Key words

Site-specific recombination R Recombinase RS site DNA circle Saccharomyces cerevisiae 


  1. 1.
    Raghuraman MK, Brewer BJ, Fangman WL (1997) Cell cycle-dependent establishment of a late replication program. Science 276: 806–809.PubMedCrossRefGoogle Scholar
  2. 2.
    Megee PC, Koshland D (1999) A functional assay for centromere-associated sister chromatid cohesion. Science 285: 254–257.PubMedCrossRefGoogle Scholar
  3. 3.
    Holmes SG, Broach JR (1996) Silencers are required for inheritence of the repressed state in yeast. Genes Dev 10: 1021–1032.PubMedCrossRefGoogle Scholar
  4. 4.
    Bi X, Broach JR (1997) DNA in transcriptionally silent chromatin assumes a distinct topology that is sensitive to cell cycle progression. Mol Cell Biol 17: 7077–7087.PubMedGoogle Scholar
  5. 5.
    Cheng T-H, Li Y-C, Gartenberg MR (1998) Persistence of an alternate chromatin structure at silenced loci in the absence of silencers. Proc Natl Acad Sci USA 95: 5521–5526.PubMedCrossRefGoogle Scholar
  6. 6.
    Cheng T-H, Gartenberg MR (2000) Yeast heterochromatin is a dynamic structure that requires silencers continuously. Genes Dev 14: 452–463.PubMedGoogle Scholar
  7. 7.
    Kirchmaier AL, Rine J (2001) DNA replication-independent silencing in S. cerevisiae. Science 291: 646–650.PubMedCrossRefGoogle Scholar
  8. 8.
    Li Y-C, Cheng T-H, Gartenberg MR (2001) Establishment of transcriptional silencing in the absence of DNA replication. Science 291: 650–653.PubMedCrossRefGoogle Scholar
  9. 9.
    Gartenberg MR, Neumann FN, Laroche T, Blaszczyk M, Gasser SM (2004) Sir-mediated repression can occur independently of chromosomal and subnuclear contexts. Cell 119: 955–967.PubMedCrossRefGoogle Scholar
  10. 10.
    Wu CS, Chen YF, Gartenberg MR (2011) Targeted sister chromatid cohesion by Sir2. PLoS Genet 7: e1002000.PubMedCrossRefGoogle Scholar
  11. 11.
    Ansari A, Cheng T-H, Gartenberg MR (1999) Isolation of selected chromatin fragments from yeast by site-specific recombination in vivo. Methods 17: 104–111.PubMedCrossRefGoogle Scholar
  12. 12.
    Boeger H, Griesenbeck J, Strattan JS, Kornberg RD (2003) Nucleosomes unfold completely at a transcriptionally active promoter. Mol Cell 11: 1587–1598.PubMedCrossRefGoogle Scholar
  13. 13.
    Griesenbeck J, Boeger H, Strattan JS, Kornberg RD (2004) Purification of defined chromosomal domains. Methods Enzymol 375: 170–178.PubMedCrossRefGoogle Scholar
  14. 14.
    Branda CS, Dymecki SM (2004) Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6: 7–28.PubMedCrossRefGoogle Scholar
  15. 15.
    Bischof J, Basler K (2008) Recombinases and their use in gene activation, gene inactivation, and transgenesis. Methods Mol Biol 420: 175–195.PubMedCrossRefGoogle Scholar
  16. 16.
    Logie C, Stewart AF (1995) Ligand-regulated site-specific recombination. Proc Natl Acad Sci USA 92: 5940–5944.PubMedCrossRefGoogle Scholar
  17. 17.
    Cheng T-H, Chang C-R, Joy P, Yablok S, Gartenberg MR (2000) Controlling gene expression in yeast by inducible site-specific recombination. Nucleic Acids Res 28: E108.PubMedCrossRefGoogle Scholar
  18. 18.
    Verzijlbergen KF, Menendez-Benito V, van Welsem T, van Deventer SJ, Lindstrom DL, et al. (2010) Recombination-induced tag exchange to track old and new proteins. Proc Natl Acad Sci USA 107: 64–68.PubMedCrossRefGoogle Scholar
  19. 19.
    Tsalik EL, Gartenberg MR (1998) Curing Saccharomyces cerevisiae of the 2 Micron plasmid by targeted DNA damage. Yeast 14: 847–852.PubMedCrossRefGoogle Scholar
  20. 20.
    Ghosh SK, Hajra S, Paek A, Jayaram M (2006) Mechanisms for chromosome and plasmid segregation. Annu Rev Biochem 75: 211–241.PubMedCrossRefGoogle Scholar
  21. 21.
    Matsuzaki H, Nakajima R, Nishiyama J, Araki H, Oshima Y (1990) Chromosome engineering in Saccharomyces cerevisiae by using a site-specific recombination system of a yeast plasmid. J Bact 172: 610–618.PubMedGoogle Scholar
  22. 22.
    Gartenberg MR, Wang JC (1993) Identification of barriers to rotation of DNA segments in yeast from the topology of DNA rings excised by an inducible site-specific recombinase. Proc Natl Acad Sci USA 90: 10514–10518.PubMedCrossRefGoogle Scholar
  23. 23.
    Goldstein AL, McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15: 1541–1553.PubMedCrossRefGoogle Scholar
  24. 24.
    Güldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH (1996) New efficient gene disruption cassette for repeated use in budding yeast. Nucl Acids Res 24: 2519–2524.PubMedCrossRefGoogle Scholar
  25. 25.
    Boeke JD, LaCroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5’-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197: 345–346.PubMedCrossRefGoogle Scholar
  26. 26.
    Reid RJ, Lisby M, Rothstein R (2002) Cloning-free genome alterations in Saccharomyces cerevisiae using adaptamer-mediated PCR. Methods Enzymol 350: 258–277.PubMedCrossRefGoogle Scholar
  27. 27.
    Ansari A, Gartenberg MR (1999) Persistence of an alternate chromatin structure at silenced loci in vitro. Proc Natl Acad Sci USA 96: 343–348.PubMedCrossRefGoogle Scholar
  28. 28.
    Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, et al., editors (2010) Current Protocols in Molecular Biology. New York: John Wiley & Sons.Google Scholar
  29. 29.
    Smith MC, Brown WR, McEwan AR, Rowley PA (2010) Site-specific recombination by phiC31 integrase and other large serine recombinases. Biochem Soc Trans 38: 388–394.PubMedCrossRefGoogle Scholar
  30. 30.
    Weber SA, Gerton JL, Polancic JE, DeRisi JL, Koshland D, et al. (2004) The kinetochore is an enhancer of pericentric cohesin binding. PLoS Biol 2: E260.PubMedCrossRefGoogle Scholar
  31. 31.
    Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, et al. (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14: 115–132.PubMedCrossRefGoogle Scholar
  32. 32.
    Rothstein R (1991) Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol 194: 281–301.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Pharmacology, Robert Wood Johnson Medical SchoolUniversity of Medicine and Dentistry of New JerseyPiscatawayUSA
  2. 2.The Cancer Institute of New JerseyNew BrunswickUSA

Personalised recommendations