Quantitative Analysis of Genome-Wide Chromatin Remodeling

  • Songjoon Baek
  • Myong-Hee Sung
  • Gordon L. Hager
Part of the Methods in Molecular Biology book series (MIMB, volume 833)


Recent high-throughput sequencing technologies have opened the door for genome-wide characterization of chromatin features at an unprecedented resolution. Chromatin accessibility is an important property that regulates protein binding and other nuclear processes. Here, we describe computational methods to analyze chromatin accessibility using DNaseI hypersensitivity by sequencing (DNaseI-seq). Although there are numerous bioinformatic tools to analyze ChIP-seq data, our statistical algorithm was developed specifically to identify significantly accessible genomic regions by handling features of DNaseI hypersensitivity. Without prior knowledge of relevant protein factors, one can discover genome-wide chromatin remodeling events associated with specific conditions or differentiation stages from quantitative analysis of DNaseI hypersensitivity. By performing appropriate subsequent computational analyses on a select subset of remodeled sites, it is also possible to extract information about putative factors that may bind to specific DNA elements within DNaseI hypersensitive sites. These approaches enabled by DNaseI-seq represent a powerful new methodology that reveals mechanisms of transcriptional regulation.

Key words

Chromatin Chromatin remodeling DNaseI hypersensitivity Global DHS-seq analysis Global ChIP-seq analysis Genome-wide High-throughput deep sequencing Computational methods Footprinting 


  1. 1.
    Wiench, M., Miranda, T. B., and Hager, G. L. (2011) Control of nuclear receptor function by local chromatin structure. FEBS J., 278(13): 2211–30.Google Scholar
  2. 2.
    John, S., Sabo, P. J., Thurman, R. E., Sung, M. H, Biddie, S. C., Johnson, T. A., Hager, G. L., and Stamatoyannopoulos, J. A. (2011) Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat. Genet., 43, 264–268.Google Scholar
  3. 3.
    Sabo, P. J., Kuehn, M. S., Thurman, R., Johnson, B. E., Johnson, E., M, Cao, H., Yu, M., Rosenzweig, E., Goldy, J., Haydock, A., Weaver, M., Shafer, A., Lee, K., Neri, F., Humbert, R., Singer, M. A., Richmond, T. A., Dorschner, M. O., McArthur, M., Hawrylycz, M., Green, R. D., Navas, P. A., Noble, W. S., and Stamatoyannopoulos, J. A. (2006) Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays. Nat. Methods, 3, 511–518.Google Scholar
  4. 4.
    Siersbaek, R., Nielsen, R., John, S., Sung, M. H., Baek, S., Loft, A., Hager, G. L., and Mandrup, S. (2011) Adipogenic development is associated with extensive early remodeling of the chromatin landscape and establishment of transcription factor ‘hotspots’. EMBO J., 30, 1–14.Google Scholar
  5. 5.
    Hager, G. L., Nagaich, A. K., Johnson, T. A., Walker, D. A., and John, S. (2004) Dynamics of nuclear receptor movement and transcription. Biochim. Biophys. Acta, 1677, 46–51.Google Scholar
  6. 6.
    Hager, G. L., Elbi, C., Johnson, T. A., Voss, T. C., Nagaich, A. K., Schiltz, R. L., Qiu, Y., and John, S. (2006) Chromatin dynamics and the evolution of alternate promoter states. Chromosome. Res., 14, 107–116.Google Scholar
  7. 7.
    Hager, G. L. (2009) Footprints by deep sequen-cing. Nat. Methods, 6, 254–255.Google Scholar
  8. 8.
    Crawford, G. E., Davis, S., Scacheri, P. C., Renaud, G., Halawi, M. J., Erdos, M. R., Green, R., Meltzer, P. S., Wolfsberg, T. G., and Collins, F. S. (2006) DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays. Nat. Methods, 3, 503–509.Google Scholar
  9. 9.
    Boyle, A. P., Davis, S., Shulha, H. P., Meltzer, P., Margulies, E. H., Weng, Z., Furey, T. S., and Crawford, G. E. (2008) High-resolution mapping and characterization of open chromatin across the genome. Cell, 132, 311–322.Google Scholar
  10. 10.
    Hesselberth, J. R., Zhang, Z.,, Sabo, P. J., Chen, X., Sandstrom, R., Reynolds, A. P., Thurman, R. E., Neph, S., Kuehn, M. S., Noble, W. S., Fields, S., and Stamatoyannopoulos, J. A. (2009) Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nat. Methods, 6, 283–289.Google Scholar
  11. 11.
    Ling, G., Sugathan, A., Mazor, T., Fraenkel, E., and Waxman, D. J. (2010) Unbiased, genome-wide in vivo mapping of transcriptional regulatory elements reveals sex differences in chromatin structure associated with sex-specific liver gene expression. Mol Cell Biol, 30, 5531–5544.Google Scholar
  12. 12.
    Bailey, T. L. and Gribskov, M. (1998) Combining evidence using p-values: application to sequence homology searches. Bioinformatics., 14, 48–54.Google Scholar
  13. 13.
    Bailey, T. L., Williams, N., Misleh, C., and Li, W. W. (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res., 34, W369–W373.Google Scholar
  14. 14.
    Bailey, T. L. and Elkan, C. (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol Biol, 2, 28–36.Google Scholar
  15. 15.
    Gupta, S., Stamatoyannopoulos, J. A., Bailey, T. L., and Noble, W. S. (2007) Quantifying similarity between motifs. Genome Biol, 8, R24.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Songjoon Baek
    • 1
  • Myong-Hee Sung
    • 1
  • Gordon L. Hager
    • 1
  1. 1.Laboratory of Receptor Biology and Gene ExpressionNational Cancer Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations