Henikoff S (2008) Nucleosome destabilization in the epigenetic regulation of gene expression. Nat Rev Genet 9:15–26
PubMed
CrossRef
CAS
Google Scholar
Weintraub H, Groudine M (1976) Chromo-somal subunits in active genes have an altered conformation. Science 193:848–56
PubMed
CrossRef
CAS
Google Scholar
Crawford GE, Holt IE, Mullikin JC, Tai D, Blakesley R, Bouffard G, Young A, Masiello C, Green ED, Wolfsberg TG, Collins FS (2004) Identifying gene regulatory elements by genome-wide recovery of DNase hypersensitive sites. Proc Natl Acad Sci USA 101:992–7
PubMed
CrossRef
CAS
Google Scholar
Hesselberth JR, Chen X, Zhang Z, Sabo PJ, Sandstrom R, Reynolds AP, Thurman RE, Neph S, Kuehn MS, Noble WS, Fields S, Stamatoyannopoulos JA (2009) Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nat Methods 6:283–9
PubMed
CrossRef
CAS
Google Scholar
Lee W, Tillo D, Bray N, Morse RH, Davis RW, Hughes TR, Nislow C (2007) A high-resolution atlas of nucleosome occupancy in yeast. Nat Genet 39:1235–44
PubMed
CrossRef
CAS
Google Scholar
Tsankov AM, Thompson DA, Socha A, Regev A, Rando OJ (2010) The role of nucleosome positioning in the evolution of gene regulation. PLoS Biol 8:e1000414
PubMed
CrossRef
Google Scholar
Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD (2007) FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res 17:877–85
PubMed
CrossRef
CAS
Google Scholar
Auerbach RK, Euskirchen G, Rozowsky J, Lamarre-Vincent N, Moqtaderi Z, Lefrancois P, Struhl K, Gerstein M, Snyder M (2009) Mapping accessible chromatin regions using Sono-Seq. Proc Natl Acad Sci USA 106:14926–31
PubMed
CrossRef
CAS
Google Scholar
Dion MF, Kaplan T, Kim M, Buratowski S, Friedman N, Rando OJ (2007) Dynamics of replication-independent histone turnover in budding yeast. Science 315:1405–8
PubMed
CrossRef
CAS
Google Scholar
Deal RB, Henikoff JG, Henikoff S (2010) Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328:1161–64
PubMed
CrossRef
CAS
Google Scholar
Sikes ML, Bradshaw JM, Ivory WT, Lunsford JL, McMillan RE, Morrison CR (2009) A streamlined method for rapid and sensitive chromatin immunoprecipitation. J Immunol Methods 344:58–63
PubMed
CrossRef
CAS
Google Scholar
Bonner J, Dahmus ME, Fambrough D, Huang RC, Marushige K, Tuan DY (1968) The Biology of Isolated Chromatin: Chromosomes, biologically active in the test tube, provide a powerful tool for the study of gene action. Science 159:47–56
CrossRef
CAS
Google Scholar
Gilchrist DA, Fargo DC, Adelman K (2009) Using ChIP-chip and ChIP-seq to study the regulation of gene expression: genome-wide localization studies reveal widespread regulation of transcription elongation. Methods 48:398–408
CrossRef
Google Scholar
van Steensel B, Delrow J, Henikoff S (2001) Chromatin profiling using targeted DNA adenine methyltransferase. Nat Genet 27:304–8
PubMed
CrossRef
Google Scholar
Sanders MM (1978) Fractionation of nucleosomes by salt elution from micrococcal nuclease-digested nuclei. J Cell Biol 79:97–109
PubMed
CrossRef
CAS
Google Scholar
Henikoff S, Henikoff JG, Sakai A, Loeb GB, Ahmad K (2009) Genome-wide profiling of salt fractions maps physical properties of chromatin. Genome Res 19:460–9
PubMed
CrossRef
CAS
Google Scholar
Weber CM, Henikoff JG, Henikoff S (2010) H2A.Z nucleosomes enriched over active genes are homotypic. Nat Struct Mol Biol 17:1500–7
PubMed
CrossRef
CAS
Google Scholar