Skip to main content

Salt Fractionation of Nucleosomes for Genome-Wide Profiling

Part of the Methods in Molecular Biology book series (MIMB,volume 833)

Abstract

Salt fractionation of nucleosomes, a classical method for defining “active” chromatin based on nucleosome solubility, has recently been adapted for genome-scale profiling. This method has several advantages for profiling chromatin dynamics, including general applicability to cell lines and tissues, quantitative recovery of chromatin, base-pair resolution of nucleosomes, and overall simplicity both in concept and execution. This chapter provides detailed protocols for nuclear isolation, chromatin fragmentation by micrococcal nuclease digestion, successive solubilization of chromatin fractions by addition of increasing concentrations of salt, and genome-wide analyses through microarray hybridization and next-generation sequencing.

Key words

  • Salt extraction
  • Nucleosome solubility
  • Chromatin organization

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-61779-477-3_25
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-1-61779-477-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.00
Price excludes VAT (USA)
Hardcover Book
USD   179.00
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Henikoff S (2008) Nucleosome destabilization in the epigenetic regulation of gene expression. Nat Rev Genet 9:15–26

    PubMed  CrossRef  CAS  Google Scholar 

  2. Weintraub H, Groudine M (1976) Chromo-somal subunits in active genes have an altered conformation. Science 193:848–56

    PubMed  CrossRef  CAS  Google Scholar 

  3. Crawford GE, Holt IE, Mullikin JC, Tai D, Blakesley R, Bouffard G, Young A, Masiello C, Green ED, Wolfsberg TG, Collins FS (2004) Identifying gene regulatory elements by genome-wide recovery of DNase hypersensitive sites. Proc Natl Acad Sci USA 101:992–7

    PubMed  CrossRef  CAS  Google Scholar 

  4. Hesselberth JR, Chen X, Zhang Z, Sabo PJ, Sandstrom R, Reynolds AP, Thurman RE, Neph S, Kuehn MS, Noble WS, Fields S, Stamatoyannopoulos JA (2009) Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nat Methods 6:283–9

    PubMed  CrossRef  CAS  Google Scholar 

  5. Lee W, Tillo D, Bray N, Morse RH, Davis RW, Hughes TR, Nislow C (2007) A high-resolution atlas of nucleosome occupancy in yeast. Nat Genet 39:1235–44

    PubMed  CrossRef  CAS  Google Scholar 

  6. Tsankov AM, Thompson DA, Socha A, Regev A, Rando OJ (2010) The role of nucleosome positioning in the evolution of gene regulation. PLoS Biol 8:e1000414

    PubMed  CrossRef  Google Scholar 

  7. Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD (2007) FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res 17:877–85

    PubMed  CrossRef  CAS  Google Scholar 

  8. Auerbach RK, Euskirchen G, Rozowsky J, Lamarre-Vincent N, Moqtaderi Z, Lefrancois P, Struhl K, Gerstein M, Snyder M (2009) Mapping accessible chromatin regions using Sono-Seq. Proc Natl Acad Sci USA 106:14926–31

    PubMed  CrossRef  CAS  Google Scholar 

  9. Dion MF, Kaplan T, Kim M, Buratowski S, Friedman N, Rando OJ (2007) Dynamics of replication-independent histone turnover in budding yeast. Science 315:1405–8

    PubMed  CrossRef  CAS  Google Scholar 

  10. Deal RB, Henikoff JG, Henikoff S (2010) Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328:1161–64

    PubMed  CrossRef  CAS  Google Scholar 

  11. Sikes ML, Bradshaw JM, Ivory WT, Lunsford JL, McMillan RE, Morrison CR (2009) A streamlined method for rapid and sensitive chromatin immunoprecipitation. J Immunol Methods 344:58–63

    PubMed  CrossRef  CAS  Google Scholar 

  12. Bonner J, Dahmus ME, Fambrough D, Huang RC, Marushige K, Tuan DY (1968) The Biology of Isolated Chromatin: Chromosomes, biologically active in the test tube, provide a powerful tool for the study of gene action. Science 159:47–56

    CrossRef  CAS  Google Scholar 

  13. Gilchrist DA, Fargo DC, Adelman K (2009) Using ChIP-chip and ChIP-seq to study the regulation of gene expression: genome-wide localization studies reveal widespread regulation of transcription elongation. Methods 48:398–408

    CrossRef  Google Scholar 

  14. van Steensel B, Delrow J, Henikoff S (2001) Chromatin profiling using targeted DNA adenine methyltransferase. Nat Genet 27:304–8

    PubMed  CrossRef  Google Scholar 

  15. Sanders MM (1978) Fractionation of nucleosomes by salt elution from micrococcal nuclease-digested nuclei. J Cell Biol 79:97–109

    PubMed  CrossRef  CAS  Google Scholar 

  16. Henikoff S, Henikoff JG, Sakai A, Loeb GB, Ahmad K (2009) Genome-wide profiling of salt fractions maps physical properties of chromatin. Genome Res 19:460–9

    PubMed  CrossRef  CAS  Google Scholar 

  17. Weber CM, Henikoff JG, Henikoff S (2010) H2A.Z nucleosomes enriched over active genes are homotypic. Nat Struct Mol Biol 17:1500–7

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Henikoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Teves, S.S., Henikoff, S. (2012). Salt Fractionation of Nucleosomes for Genome-Wide Profiling. In: Morse, R. (eds) Chromatin Remodeling. Methods in Molecular Biology, vol 833. Humana Press. https://doi.org/10.1007/978-1-61779-477-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-477-3_25

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-476-6

  • Online ISBN: 978-1-61779-477-3

  • eBook Packages: Springer Protocols