Strain Construction and Screening Methods for a Yeast Histone H3/H4 Mutant Library

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 833)

Abstract

A mutant library consisting of hundreds of designed point and deletion mutants in the genes encoding Saccharomyces cerevisiae histones H3 and H4 is described. Incorporation of this library into a suitably engineered yeast strain (e.g., bearing a reporter of interest), and the validation of individual library members is described in detail.

Key words

Histones modification Chromatin remodeling High-throughput mutagenesis 

References

  1. 1.
    Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705.PubMedCrossRefGoogle Scholar
  2. 2.
    Klose RJ & Zhang Y (2007) Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol 8(4):307–318.PubMedCrossRefGoogle Scholar
  3. 3.
    Altaf M, et al. (2007) Interplay of chromatin modifiers on a short basic patch of histone H4 tail defines the boundary of telomeric heterochromatin. Mol Cell 28(6):1002–1014.PubMedCrossRefGoogle Scholar
  4. 4.
    Norris A & Boeke JD (2010) Silent information regulator 3: the Goldilocks of the silencing complex. Genes Dev 24(2):115–122.PubMedCrossRefGoogle Scholar
  5. 5.
    Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447(7143):407–412.PubMedCrossRefGoogle Scholar
  6. 6.
    Morillon A, Karabetsou N, Nair A, & Mellor J (2005) Dynamic lysine methylation on histone H3 defines the regulatory phase of gene transcription. Mol Cell 18(6):723–734.PubMedCrossRefGoogle Scholar
  7. 7.
    Cheung WL, et al. (2005) Phosphorylation of histone H4 serine 1 during DNA damage requires casein kinase II in S. cerevisiae. Curr Biol 15(7):656–660.PubMedCrossRefGoogle Scholar
  8. 8.
    Utley RT, Lacoste N, Jobin-Robitaille O, Allard S, & Cote J (2005) Regulation of NuA4 histone acetyltransferase activity in transcription and DNA repair by phosphorylation of histone H4. Mol Cell Biol 25(18):8179–8190.PubMedCrossRefGoogle Scholar
  9. 9.
    Furuyama S & Biggins S (2007) Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc Natl Acad Sci USA 104(37):14706–14711.PubMedCrossRefGoogle Scholar
  10. 10.
    Guillemette B, et al. (2005) Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol 3(12):e384.PubMedCrossRefGoogle Scholar
  11. 11.
    Weber CM, Henikoff JG, & Henikoff S (2010) H2A.Z nucleosomes enriched over active genes are homotypic. Nat Struct Mol Biol 17(12):1500–1507.PubMedCrossRefGoogle Scholar
  12. 12.
    Whittle CM, et al. (2008) The genomic distribution and function of histone variant HTZ-1 during C. elegans embryogenesis. PLoS Genet 4(9):e1000187.PubMedCrossRefGoogle Scholar
  13. 13.
    Barski A, et al. (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837.PubMedCrossRefGoogle Scholar
  14. 14.
    Kumar SV & Wigge PA (2010) H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140(1):136–147.PubMedCrossRefGoogle Scholar
  15. 15.
    Weake VM & Workman JL (2010) Inducible gene expression: diverse regulatory mechanisms. Nat Rev Genet 11(6):426–437.PubMedCrossRefGoogle Scholar
  16. 16.
    Hassan AH, Neely KE, & Workman JL (2001) Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell 104(6):817–827.PubMedCrossRefGoogle Scholar
  17. 17.
    Hassan AH, et al. (2002) Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111(3):369–379.PubMedCrossRefGoogle Scholar
  18. 18.
    Chandy M, Gutierrez JL, Prochasson P, & Workman JL (2006) SWI/SNF displaces SAGA-acetylated nucleosomes. Eukaryot Cell 5(10):1738–1747.PubMedCrossRefGoogle Scholar
  19. 19.
    Carey M, Li B, & Workman JL (2006) RSC exploits histone acetylation to abrogate the nucleosomal block to RNA polymerase II elongation. Mol Cell 24(3):481–487.PubMedCrossRefGoogle Scholar
  20. 20.
    Reinke H & Horz W (2003) Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter. Mol Cell 11(6):1599–1607.PubMedCrossRefGoogle Scholar
  21. 21.
    Steger DJ, Haswell ES, Miller AL, Wente SR, & O’Shea EK (2003) Regulation of chromatin remodeling by inositol polyphosphates. Science 299(5603):114–116.PubMedCrossRefGoogle Scholar
  22. 22.
    Dai J, et al. (2008) Probing nucleosome function: a highly versatile library of synthetic histone H3 and H4 mutants. Cell 134(6):1066–1078.PubMedCrossRefGoogle Scholar
  23. 23.
    Brachmann CB, et al. (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14(2):115–132.PubMedCrossRefGoogle Scholar
  24. 24.
    Goldstein AL & McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15(14):1541–1553.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.School of Life SciencesTsinghua UniversityBeijingChina
  2. 2.High Throughput Biology CenterJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations