Role of UbL Family Modifiers and Their Binding Proteins in Cell Signaling

  • Sjoerd J. L. van Wijk
  • Magda Bienko
  • Ivan Dikic
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 832)

Abstract

The versatile function of ubiquitin (Ub) is powerfully illustrated by its appearance in multiple forms and shapes, like polymeric ubiquitin chains. These chains, when recognized by specific ubiquitin-binding domains (UBDs), give rise to extraordinary complex signaling networks that regulate virtually every cellular function. At the heart of our understanding of this complexity is the evolution and adaptation of technologies and methods to analyze ubiquitin biochemistry, e.g., covalent Ub–substrate conjugates as well as transient Ub–UBD interactions. Here, we describe seminal developments in those methodologies that have paved the way to our understanding of the diversity of Ub signals as well as their recognition and interpretation by UBD-containing proteins.

Key words

Polyubiquitin chains Ubiquitin-binding domains Linkage-specific antibodies Mass spectrometry SILAC AQUA 

References

  1. 1.
    Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425479.PubMedCrossRefGoogle Scholar
  2. 2.
    Varshavsky A (2005) Regulated protein degradation. Trends Biochem Sci 30:283286.PubMedCrossRefGoogle Scholar
  3. 3.
    Schulman, B A, Harper, J W (2009) Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol 10:319–331.PubMedCrossRefGoogle Scholar
  4. 4.
    van Wijk SJ, Timmers HT (2010) The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J 24:981–993.PubMedCrossRefGoogle Scholar
  5. 5.
    Deshaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434.PubMedCrossRefGoogle Scholar
  6. 6.
    Ravid T, Hochstrasser M (2008) Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Biol 9:679–690.PubMedCrossRefGoogle Scholar
  7. 7.
    Ikeda F, Dikic I (2008) Atypical ubiquitin chains: new molecular signals ‘Protein Modifications: Beyond the Usual Suspects’ review series. EMBO Rep 9:536–542.PubMedCrossRefGoogle Scholar
  8. 8.
    Dikic I, Wakatsuki S, Walters KJ (2009) Ubiquitin-binding domains - from structures to functions. Nat Rev Mol Cell Biol 10:659–671.PubMedCrossRefGoogle Scholar
  9. 9.
    Broemer M, Meier P (2009) Ubiquitin-mediated regulation of apoptosis. Trends Cell Biol 19:130–140.PubMedCrossRefGoogle Scholar
  10. 10.
    Ulrich HD, Walden H (2010) Ubiquitin signalling in DNA replication and repair. Nat Rev Mol Cell Biol 11:479–489.PubMedCrossRefGoogle Scholar
  11. 11.
    Bergink S, Jentsch S (2009) Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458:461–467.PubMedCrossRefGoogle Scholar
  12. 12.
    Hirsch C, Gauss R, Horn SC, et al (2009) The ubiquitylation machinery of the endoplasmic reticulum. Nature 458:453–460.PubMedCrossRefGoogle Scholar
  13. 13.
    Wertz IE, Dixit VM (2010) Regulation of death receptor signaling by the ubiquitin system. Cell Death Differ 17:14–24.PubMedCrossRefGoogle Scholar
  14. 14.
    Raiborg C, Stenmark H (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458:445–452.PubMedCrossRefGoogle Scholar
  15. 15.
    Wickliffe K, Williamson A, Jin L, Rape M (2009) The multiple layers of ubiquitin-dependent cell cycle control. Chem Rev 109:1537–1548.PubMedCrossRefGoogle Scholar
  16. 16.
    Dammer E, Peng J (2010) At the crossroads of ubiquitin signaling and mass spectrometry. Expert Rev Proteomics 7643–645.Google Scholar
  17. 17.
    Danielsen JM, Sylvestersen KB, Bekker-Jensen S, et al (2011) Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level. Mol Cell Proteomics 10:M110.003590.Google Scholar
  18. 18.
    Phu L, Izrael-Tomasevic A, Matsumoto ML, et al (2010) Improved quantitative mass spectrometry methods for characterizing complex ubiquitin signals. Mol Cell Proteomics doi: 10.1074/mcp.M110.003756.Google Scholar
  19. 19.
    Newton K, Matsumoto ML, Wertz IE, et al (2008) Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 134:668–678.PubMedCrossRefGoogle Scholar
  20. 20.
    Matsumoto, M L, Wickliffe, K E, Dong, K C, et al (2010) K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol Cell 39:477–484.PubMedCrossRefGoogle Scholar
  21. 21.
    Perica T, Chothia C (2010) Ubiquitin--molecular mechanisms for recognition of different structures. Curr Opin Struct Biol 20:367–376.PubMedCrossRefGoogle Scholar
  22. 22.
    Winget JM, Mayor T (2010) The diversity of ubiquitin recognition: hot spots and varied specificity. Mol Cell 38:627–635.PubMedCrossRefGoogle Scholar
  23. 23.
    Dynek JN, Goncharov T, Dueber EC, et al (2010) c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO J 29:4198–4209.PubMedCrossRefGoogle Scholar
  24. 24.
    Eger S, Scheffner M, Marx A, Rubini M (2010) Synthesis of defined ubiquitin dimers. J Am Chem Soc 132:16337–16339.PubMedCrossRefGoogle Scholar
  25. 25.
    El Oualid F, Merkx R, Ekkebus R, et al (2010) Chemical Synthesis of Ubiquitin, Ubiquitin-Based Probes, and Diubiquitin. Angew Chem Int Ed Engl 49 :10149–10153. PubMedCrossRefGoogle Scholar
  26. 26.
    Kulathu Y, Akutsu M, Bremm A, et al (2009) Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain. Nat Struct Mol Biol 16:1328–1330.PubMedCrossRefGoogle Scholar
  27. 27.
    Komander D, Reyes-Turcu F, Licchesi JD, et al (2009) Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep 10:466–473.PubMedCrossRefGoogle Scholar
  28. 28.
    Bosanac, I, Wertz, I E, Pan B, et al (2010) Ubiquitin binding to A20 ZnF4 is required for modulation of NF-kappaB signaling. Mol Cell 40:548–557.PubMedCrossRefGoogle Scholar
  29. 29.
    Ikeda F, Crosetto N, Dikic I (2010) What determines the specificity and outcomes of ubiquitin signaling? Cell 143:677–681.PubMedCrossRefGoogle Scholar
  30. 30.
    Iwai K, Tokunaga F (2009) Linear polyubiquitination: a new regulator of NF-kappaB activation. EMBO Rep 10:706–713.PubMedCrossRefGoogle Scholar
  31. 31.
    Pierce NW, Kleiger G, Shan SO, Deshaies RJ (2009) Detection of sequential polyubiquitylation on a millisecond timescale. Nature 462:615–619.PubMedCrossRefGoogle Scholar
  32. 32.
    Clague MJ, Urbe S (2010) Ubiquitin: same molecule, different degradation pathways. Cell 143:682–685.PubMedCrossRefGoogle Scholar
  33. 33.
    Kleiger G, Saha A, Lewis S, et al (2009) Rapid E2-E3 assembly and disassembly enable processive ubiquitylation of cullin-RING ubiquitin ligase substrates. Cell 139:957–968.PubMedCrossRefGoogle Scholar
  34. 34.
    Yen HC, Elledge SJ (2008) Identification of SCF ubiquitin ligase substrates by global protein stability profiling. Science 322:923–929.PubMedCrossRefGoogle Scholar
  35. 35.
    Xu P, Duong DM, Seyfried NT, et al (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137:133–145.PubMedCrossRefGoogle Scholar
  36. 36.
    Hjerpe R, Rodriguez MS (2008) Efficient approaches for characterizing ubiquitinated proteins. Biochem Soc Trans 36:823–827.PubMedCrossRefGoogle Scholar
  37. 37.
    Meierhofer D, Wang X, Huang L, Kaiser P (2008) Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J Proteome Res 7:4566–4576.PubMedCrossRefGoogle Scholar
  38. 38.
    Shi Y, Chan DW, Jung SY, et al (2011) A dataset of human endogenous ubiquitina­tion sites. Mol Cell Proteomics doi:M110.002089.Google Scholar
  39. 39.
    Nielsen ML, Vermeulen M, Bonaldi T, et al (2008) Iodoacetamide-induced artifact mimics ubiquitination in mass spectrometry. Nat Methods 5:459–460.PubMedCrossRefGoogle Scholar
  40. 40.
    Golebiowski F, Tatham MH, Nakamura A, Hay RT (2010) High-stringency tandem affinity purification of proteins conjugated to ubiquitin-like moieties. Nat Protoc 5:873–882.PubMedCrossRefGoogle Scholar
  41. 41.
    Golebiowski F, Matic I, Tatham MH, et al (2009) System-wide changes to SUMO modifications in response to heat shock. Sci Signal 2 :ra24.Google Scholar
  42. 42.
    Matic I, van Hagen M, Schimmel J, et al (2008) In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol Cell Proteomics 7:132–144.PubMedGoogle Scholar
  43. 43.
    Vertegaal AC, Andersen JS, Ogg SC, et al (2006) Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Mol Cell Proteomics 5:2298–2310.PubMedCrossRefGoogle Scholar
  44. 44.
    Spence J, Sadis S, Haas AL, Finley D (1995) A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol Cell Biol 15:1265–1273.PubMedGoogle Scholar
  45. 45.
    Finley D, Sadis S, Monia BP, et al (1994) Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant. Mol Cell Biol 14:5501–5509.PubMedGoogle Scholar
  46. 46.
    Xu M, Skaug B, Zeng W, Chen ZJ (2009) A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFalpha and IL-1beta. Mol Cell 36:302–314.PubMedCrossRefGoogle Scholar
  47. 47.
    Raasi S, Pickart CM (2003) Rad23 ubiquitin-associated domains (UBA) inhibit 26 S proteasome-catalyzed proteolysis by sequestering lysine 48-linked polyubiquitin chains. J Biol Chem 278, 8951–8959PubMedCrossRefGoogle Scholar
  48. 48.
    Raasi S, Orlov I, Fleming KG, Pickart CM (2004) Binding of polyubiquitin chains to ubiquitin-associated (UBA) domains of HHR23A. J Mol Biol 341, 1367–1379.PubMedCrossRefGoogle Scholar
  49. 49.
    Hjerpe R, Aillet F, Lopitz-Otsoa F, et al (2009) Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO Rep 10:12501258.PubMedCrossRefGoogle Scholar
  50. 50.
    Xu G, Paige JS, Jaffrey SR (2010) Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat Biotechnol 28:868873.PubMedCrossRefGoogle Scholar
  51. 51.
    Andersen, J S, Matic, I, Vertegaal, A C (2009) Identification of SUMO target proteins by quantitative proteomics. Methods Mol Biol 497:19–31PubMedCrossRefGoogle Scholar
  52. 52.
    Bartee E, Eyster CA, Viswanathan K, et al (2010) Membrane-Associated RING-CH Proteins Associate with Bap31 and Target CD81 and CD44 to Lysosomes. PLoS One 5:e15132.PubMedCrossRefGoogle Scholar
  53. 53.
    Xu P, Duong DM, Peng J (2009) Systematical optimization of reverse-phase chromatography for shotgun proteomics. J Proteome Res 8:3944–3950.PubMedCrossRefGoogle Scholar
  54. 54.
    Kirkpatrick DS, Denison C, Gygi SP (2005) Weighing in on ubiquitin: the expanding role of mass-spectrometry-based proteomics. Nat Cell Biol 7:750–757.PubMedCrossRefGoogle Scholar
  55. 55.
    Kirkpatrick DS, Gerber SA, Gygi SP (2005) The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 35:265–273.PubMedCrossRefGoogle Scholar
  56. 56.
    Del Rincon SV, Rogers J, Widschwendter M, et al (2010) Development and validation of a method for profiling post-translational modification activities using protein microarrays. PLoS One 5:e11332.PubMedCrossRefGoogle Scholar
  57. 57.
    Persaud A, Alberts P, Amsen, EM, et al (2009) Comparison of substrate specificity of the ubiquitin ligases Nedd4 and Nedd4-2 using proteome arrays. Mol Syst Biol 5:333.PubMedCrossRefGoogle Scholar
  58. 58.
    Gupta R, Kus B, Fladd C, et al (2007) Ubiquitination screen using protein microarrays for comprehensive identification of Rsp5 substrates in yeast. Mol Syst Biol 3:116.PubMedCrossRefGoogle Scholar
  59. 59.
    Merbl Y, Kirschner MW (2009) Large-scale detection of ubiquitination substrates using cell extracts and protein microarrays. Proc Natl Acad Sci U S A 106 :25432548.PubMedCrossRefGoogle Scholar
  60. 60.
    Fushman D, Walker O (2010) Exploring the linkage dependence of polyubiquitin conformations using molecular modeling. J Mol Biol 395:803814.PubMedCrossRefGoogle Scholar
  61. 61.
    Bremm A, Freund SM, Komander D (2010) Lys11-linked ubiquitin chains adopt compact conformations and are preferentially ­hydrolyzed by the deubiquitinase Cezanne. Nat Struct Mol Biol 17:939–947.PubMedCrossRefGoogle Scholar
  62. 62.
    Varadan R, Walker O, Pickart C, Fushman D (2002) Structural properties of polyubiquitin chains in solution. J Mol Biol 324:637–647.PubMedCrossRefGoogle Scholar
  63. 63.
    Rahighi S, Ikeda F, Kawasaki M, et al (2009) Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 136:1098–1109.PubMedCrossRefGoogle Scholar
  64. 64.
    Wang H, Matsuzawa A, Brown SA, et al (2008) Analysis of nondegradative protein ubiquitylation with a monoclonal antibody specific for lysine-63-linked polyubiquitin. Proc Natl Acad Sci U S A 105:20197–20202.PubMedCrossRefGoogle Scholar
  65. 65.
    Tokunaga F, Sakata S, Saeki Y, et al (2009) Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol 11:123–132.PubMedCrossRefGoogle Scholar
  66. 66.
    Swanson KA, Kang RS, Stamenova SD, et al (2003) Solution structure of Vps27 UIM-ubiquitin complex important for endosomal sorting and receptor downregulation. EMBO J 22:4597–4606.PubMedCrossRefGoogle Scholar
  67. 67.
    Ohno A, Jee J, Fujiwara K, et al (2005) Structure of the UBA domain of Dsk2p in complex with ubiquitin molecular determinants for ubiquitin recognition. Structure 13:521–532.PubMedCrossRefGoogle Scholar
  68. 68.
    Wagner S, Carpentier I, Rogov V, et al (2008) Ubiquitin binding mediates the NF-kappaB inhibitory potential of ABIN proteins. Oncogene 27:3739–3745.PubMedCrossRefGoogle Scholar
  69. 69.
    Bienko M, Green C M, Crosetto N, et al (2005) Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310:1821–1824.PubMedCrossRefGoogle Scholar
  70. 70.
    Lee S, Tsai YC, Mattera R, et al (2006) Structural basis for ubiquitin recogniti.on and autoubiquitination by Rabex-5, Nat Struct Mol Biol 13:264–271PubMedCrossRefGoogle Scholar
  71. 71.
    Husnjak K, Elsasser S, Zhang N, et al (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453:481–488.PubMedCrossRefGoogle Scholar
  72. 72.
    VanDemark AP, Hofmann RM, Tsui C, et al (2001) Molecular insights into polyubiquitin chain assembly: crystal structure of the Mms2/Ubc13 heterodimer. Cell 105:711–720.PubMedCrossRefGoogle Scholar
  73. 73.
    Brzovic PS, Lissounov A, Christensen DE, et al (2006) A UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination. Mol Cell 21:873–880.PubMedCrossRefGoogle Scholar
  74. 74.
    Bienko M, Green CM, Sabbioneda S, et al (2010) Regulation of translesion synthesis DNA polymerase eta by monoubiquitination. Mol Cell 37:396–407.PubMedCrossRefGoogle Scholar
  75. 75.
    Pickart C M, Raasi S (2005) Controlled synthesis of polyubiquitin chains. Methods Enzymol 399:21–36.PubMedCrossRefGoogle Scholar
  76. 76.
    Raasi S, Pickart CM (2005) Ubiquitin chain synthesis. Methods Mol Biol 301:47–55.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Sjoerd J. L. van Wijk
    • 1
  • Magda Bienko
    • 1
    • 2
  • Ivan Dikic
    • 1
  1. 1.Frankfurt Institute for Molecular Life Sciences and Institute of Biochemistry IIGoethe University School of MedicineFrankfurt (Main)Germany
  2. 2.Departments of Physics and of BiologyMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations