Advertisement

Data Mining in Psychiatric Research

  • Diego Tovar
  • Eduardo Cornejo
  • Petros Xanthopoulos
  • Mario R. Guarracino
  • Panos M. Pardalos
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 829)

Abstract

Mathematical sciences and computational methods have found new applications in fields like medicine over the last few decades. Modern data acquisition and data analysis protocols have been of great assistance to medical researchers and clinical scientists. Especially in psychiatry, technology and science have made new computational methods available to assist the development of predictive modeling and to identify diseases more accurately. Data mining (or knowledge discovery) aims to extract information from large datasets and solve challenging tasks, like patient assessment, early mental disease diagnosis, and drug efficacy assessment. Accurate and fast data analysis methods are very important, especially when dealing with severe psychiatric diseases like schizophrenia. In this paper, we focus on computational methods related to data analysis and more specifically to data mining. Then, we discuss some related research in the field of psychiatry.

Key words

Data mining Machine learning Psychiatry Drug efficacy Schizophrenia 

References

  1. 1.
    Alves, C. J. S., Pardalos, P. M., and Vicente, L. N. (2008) Optimization in medicine, 1st ed., Springer, New York.CrossRefGoogle Scholar
  2. 2.
    Chaovalitwongse, W. A., Pardalos, P. M., and Xanthopoulos, P., (Eds.) (2010) Computational Neuroscience, Vol. 38, Springer, New York.Google Scholar
  3. 3.
    Pardalos, P. M., and Romeijn, H. E. (2009) Handbook of Optimization in Medicine, Springer, New York.Google Scholar
  4. 4.
    Seref, O., Kundakcioglu, O. E., and Pardalos, P. M. (2007) Data mining, systems analysis, and optimization in biomedicine : Gainesville, Florida, U.S.A., 28–30 March 2007, American Institute of Physics, Melville, N.Y.Google Scholar
  5. 5.
    Mucherino, A., Papajorgji, P., and Pardalos, P. M. (2009) Data Mining in Agriculture, Springer.Google Scholar
  6. 6.
    Jain, A. K., and Dubes, R. C. (1988) Algorithms for clustering data, Prentice Hall.Google Scholar
  7. 7.
    Bishop, C. M. (2006) Pattern recognition and machine learning, Springer, New York.Google Scholar
  8. 8.
    Quinlan, J. R. (1992) C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo, CA.Google Scholar
  9. 9.
    Quinlan, J. R. (1996) Improved use of continuous attributes in C4.5, J Artif Intell Res 4, 77–90.Google Scholar
  10. 10.
    Vapnik, V. N. (1995) The nature of statistical learning theory, Springer, New York.Google Scholar
  11. 11.
    Shawe-Taylor, J., and Cristianini, N. (2004) Kernel methods for pattern analysis, Cambridge University Press, Cambridge, UK ; New York.Google Scholar
  12. 12.
    Busygin, S., Prokopyev, O., and Pardalos, P. M. (2008) Biclustering in data mining, Comput Oper Res 35, 2964–2987.CrossRefGoogle Scholar
  13. 13.
    Xanthopoulos, P., Boyko, N., Fan, N., and Pardalos, P. M. (2010) Biclustering: algorithms and applications in data mining and forecasting, in Encyclopedia of Operations Research and Management Science (Wiley, Ed.), p to apprear.Google Scholar
  14. 14.
    Guyon, I., and Elisseeff, A. (2003) An introduction to variable and feature selection, Journal of Machine Learning Research 3, 1157–1182.Google Scholar
  15. 15.
    Abello, J., Pardalos, P. M., and Resende, M. (2002) Handbook of massive datasets, Kluwer Academic Publisher, Dordrecht, The Netherlands.Google Scholar
  16. 16.
    Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003) Cytoscape: A software environment for integrated models of biomolecular interaction networks, Genome Res 13, 2498–2504.PubMedCrossRefGoogle Scholar
  17. 17.
    Huang, C. M., Lee, Y. J., Lin, D. K. J., and Huang, S. Y. (2007) Model selection for support vector machines via uniform design, Comput Stat Data An 52, 335–346.CrossRefGoogle Scholar
  18. 18.
    Arnborg, S., Agartz, I., Hall, H., Jönsson, E., Sillén, A., and Sedvall, G. (2002) Data mining in schizophrenia research – preliminary analysis., in Principles of Data Mining and Knowledge Discovery (Elomaa, T., Mannila, H., and Toivonen, H., Eds.), pp 27–38, Springer.Google Scholar
  19. 19.
    Hall, H., Lawyer, G., Sillen, A., Jonsson, E. G., Agartz, I., Terenius, L., and Arnborg, S. (2007) Potential genetic variants in schizophrenia: A Bayesian analysis, World J Biol Psychia 8, 12–22.CrossRefGoogle Scholar
  20. 20.
    Lawyer, G., Nyman, H., Agartz, I., Arnborg, S., Jönsson, E. G., Sedvall, G. C., and Hall, H. (2006) Morphological correlates to cognitive dysfunction in schizophrenia as studied with Bayesian regression, BMC psychiatry 6:31.CrossRefGoogle Scholar
  21. 21.
    Diederich, J., Al-Ajmi, A., and Yellowlees, P. (2007) E-x-ray: Data mining and mental health, Appl Soft Comput 7, 923–928.CrossRefGoogle Scholar
  22. 22.
    Elmer, G. I., and Kafkafi, N. (2009) Drug Discovery in Psychiatric Illness: Mining for Gold, Schizophrenia Bull 35, 287–292.CrossRefGoogle Scholar
  23. 23.
    Kafkafi, N., Yekutieli, D., and Elmer, G. I. (2009) A Data Mining Approach to In Vivo Classification of Psychopharmacological Drugs, Neuropsychopharmacol 34, 607–623.CrossRefGoogle Scholar
  24. 24.
    Enna, S. J., and Williams, M. (2009) Challenges in the Search for Drugs to Treat Central Nervous System Disorders, J Pharmacol Exp Ther 329, 404–411.PubMedCrossRefGoogle Scholar
  25. 25.
    Pardalos, P. M. (2004) Quantitative neuroscience : models, algorithms, diagnostics, and therapeutic applications, Kluwer Academic, Boston.Google Scholar
  26. 26.
    Pardalos, P. M., and Príncipe, J. C. (2002) Biocomputing, Kluwer Academic, Dordrecht ; Boston, Mass.Google Scholar
  27. 27.
    Sakkalis, V., Oikonomou, T., Pachou, E., Tollis, I., Micheloyannis, S., and Zervakis, M. (2006) Time-significant wavelet coherence for the evaluation of schizophrenic brain activity using a graph theory approach, in Proceedings of 28th Annual International Conference of IEEE EMBS, New York, NY., pp 4265–4268.Google Scholar
  28. 28.
    Oikonomou, T., Sakkalis, V., Tollis, I., and Micheloyannis, S. (2006) Searching and visualizing brain networks in schizophrenia, in Biological and Medical Data Analysis (Maglaveras, N. a. C., Ioanna and Koutkias, Vassilis and Brause, Rüdiger, Ed.), pp 172–182, Springer.Google Scholar
  29. 29.
    Iasemidis, L. D., Shiau, D. S., Pardalos, P. M., Chaovalitwongse, W., Narayanan, K., Prasad, A., Tsakalis, K., Carney, P. R., and Sackellares, J. C. (2005) Long-term prospective on-line real-time seizure prediction, Clin Neurophysiol 116, 532–544.PubMedCrossRefGoogle Scholar
  30. 30.
    Lehnertz, K., and Elger, C. E. (1998) Can epileptic seizures be predicted? Evidence from nonlinear time series analysis of brain electrical activity, Phys Rev Lett 80, 5019–5023.Google Scholar
  31. 31.
    Mormann, F., Lehnertz, K., David, P., and Elger, C. E. (2000) Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients, Physica D 144, 358–369.CrossRefGoogle Scholar
  32. 32.
    Le Van Quyen, M., Martinerie, J., Baulac, M., and Varela, F. (1999) Anticipating epileptic seizure in real time by a nonlinear analysis of similarity between EEG recordings, Neuroreport 10, 2149–2155.PubMedCrossRefGoogle Scholar
  33. 33.
    Mormann, F., Andrzejak, R. G., Elger, C. E., and Lehnertz, K. (2007) Seizure prediction: the long and winding road, Brain 130, 314–333.PubMedCrossRefGoogle Scholar
  34. 34.
    Sackellares, J. C. (2008) Seizure prediction, Epilepsy Currents 8, 55–59.PubMedCrossRefGoogle Scholar
  35. 35.
    Hadzic, M., Hadzic, F., and Dillon, T. (2008) Tree Mining in mental health domain, in Hawaii International Conference on System Sciences, Proceedings of the 41st Annual, pp 230–230.Google Scholar
  36. 36.
    Tan, H., Dillon, T. S., Hadzic, F., Feng, L., and Chang, E. (2005) MB3-Miner: mining eMBedded subTREEs using tree model guided candidate generation, in Proceedings of the 1st International Workshop on Mining Complex Data 2005 in conjunction with ICDM 2005 pp 103– 110, Houston, TX.Google Scholar
  37. 37.
    Hadzic, M., D’Souza, R., Hadzic, F., and Dillon, T. (2008) Synergy of Ontology and Data Mining: Increasing Value of the Mental Health Information within PubMed database, in Proceedings of the Second IEEE International Digital Ecosystems and Technology Conference, pp 600–603.Google Scholar
  38. 38.
    Hadzic, M., D’Souza, R., Hadzic, F., and Dillon, T. (2008) Thinking PubMed: an Innovative System for Mental Health Domain, in Proceedings of the 21st IEEE International Symposium on Computer-Based Medical Systems.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Diego Tovar
    • 1
  • Eduardo Cornejo
    • 1
  • Petros Xanthopoulos
    • 1
  • Mario R. Guarracino
    • 2
  • Panos M. Pardalos
    • 1
    • 3
  1. 1.Department of Industrial and Systems Engineering, Center for Applied OptimizationUniversity of FloridaGainesvilleUSA
  2. 2.High Performance Computing and Networking InstituteNational Research CouncilNaplesItaly
  3. 3.J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations