Skip to main content

Animal Models of Sugar and Fat Bingeing: Relationship to Food Addiction and Increased Body Weight

Part of the Methods in Molecular Biology book series (MIMB,volume 829)

Abstract

Binge eating is a behavior that occurs in some eating disorders, as well as in obesity and in nonclinical populations. Both sugars and fats are readily consumed by human beings and are common components of binges. This chapter describes animal models of sugar and fat bingeing, which allow for a detailed analysis of these behaviors and their concomitant physiological effects. The model of sugar bingeing has been used successfully to elicit behavioral and neurochemical signs of dependence in rats; e.g., indices of opiate-like withdrawal, increased intake after abstinence, cross-sensitization with drugs of abuse, and the repeated release of dopamine in the nucleus accumbens following repeated bingeing. Studies using the model of fat bingeing suggest that it can produce some, but not all, of the signs of dependence that are seen with sugar binge eating, as well as increase body weight, potentially leading to obesity.

Key words

  • Binge eating
  • Dopamine
  • Fat
  • Food addiction
  • Nucleus accumbens
  • Sugar
  • Body weight

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-61779-458-2_23
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-61779-458-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.00
Price excludes VAT (USA)
Hardcover Book
USD   199.00
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hudson, J. I., Hiripi, E., Pope, H. G., Jr., and Kessler, R. C. (2007) The prevalence and correlates of eating disorders in the national comorbidity survey replication. Biol Psychiatry 61, 348–58.

    PubMed  CrossRef  Google Scholar 

  2. Ogden, C. L., Yanovski, S. Z., Carroll, M. D., and Flegal, K. M. (2007) The epidemiology of obesity. Gastroenterology 132, 2087–102.

    PubMed  CrossRef  Google Scholar 

  3. Stunkard, A. J. (1959) Eating patterns and obesity. Psychiatr Q 33, 284–95.

    PubMed  CrossRef  CAS  Google Scholar 

  4. Tanofsky-Kraff, M., Cohen, M. L., Yanovski, S. Z., Cox, C., Theim, K. R., Keil, M., Reynolds, J. C., and Yanovski, J. A. (2006) A prospective study of psychological predictors of body fat gain among children at high risk for adult obesity. Pediatrics 117, 1203–9.

    PubMed  CrossRef  Google Scholar 

  5. Ramacciotti, C. E., Coli, E., Paoli, R., Gabriellini, G., Schulte, F., Castrogiovanni, S., Dell’Osso, L., and Garfinkel, P. E. (2005) The relationship between binge eating disorder and non-purging bulimia nervosa. Eat Weight Disord 10, 8–12.

    PubMed  CAS  Google Scholar 

  6. Grucza, R. A., Przybeck, T. R., and Cloninger, C. R. (2007) Prevalence and correlates of binge eating disorder in a community sample. Compr Psychiatry 48, 124–31.

    PubMed  CrossRef  Google Scholar 

  7. Galanti, K., Gluck, M. E., and Geliebter, A. (2007) Test meal intake in obese binge eaters in relation to impulsivity and compulsivity. Int J Eat Disord 40, 727–32.

    PubMed  CrossRef  Google Scholar 

  8. Yudkin, J. (1972) Sweet and Dangerous, Peter H. Wyden, Inc, New York.

    Google Scholar 

  9. Bray, G. A., York, B., and DeLany, J. (1992) A survey of the opinions of obesity experts on the causes and treatment of obesity. Am J Clin Nutr 55, 151S–54S.

    PubMed  CAS  Google Scholar 

  10. Bray, G. A., and Popkin, B. M. (1998) Dietary fat intake does affect obesity! Am J Clin Nutr 68, 1157–73.

    PubMed  CAS  Google Scholar 

  11. Avena, N., Rada, P., and Hoebel, B. (2006) Unit 9.23C Sugar bingeing in rats, in “Current Protocols in Neuroscience” (Crawley, J., Gerfen, C., Rogawski, M., Sibley, D., Skolnick, P., and Wray, S., Eds.), John Wiley & Sons, Inc., Indianapolis pp. 9.23C.1–9.23C.6.

    Google Scholar 

  12. Avena, N. M., Rada, P., and Hoebel, B. G. (2008) Evidence of sugar addiction: Behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev 32, 20–39.

    Google Scholar 

  13. Hoebel, B. G. (1985) Brain neurotransmitters in food and drug reward. Am J Clin Nutr 42, 1133–50.

    PubMed  CAS  Google Scholar 

  14. Hernandez, L., and Hoebel, B. G. (1988) Feeding and hypothalamic stimulation increase dopamine turnover in the accumbens. Physiol Behav 44, 599–606.

    PubMed  CrossRef  CAS  Google Scholar 

  15. Kelley, A. E., Bakshi, V. P., Haber, S. N., Steininger, T. L., Will, M. J., and Zhang, M. (2002) Opioid modulation of taste hedonics within the ventral striatum. Physiol Behav 76, 365–77.

    PubMed  CrossRef  CAS  Google Scholar 

  16. Le Magnen, J. (1990) A role for opiates in food reward and food addiction, in “Taste, Experience, and Feeding” (Capaldi, P. T., Ed.), American Psychological Association, Washington, D. C. pp. 241–52.

    CrossRef  Google Scholar 

  17. Volkow, N. D., and Wise, R. A. (2005) How can drug addiction help us understand obesity? Nat Neurosci 8, 555–60.

    PubMed  CrossRef  CAS  Google Scholar 

  18. Wise, R. A. (1989) Opiate reward: sites and substrates. Neurosci Biobehav Rev 13, 129–33.

    PubMed  CrossRef  CAS  Google Scholar 

  19. Ahmed, S. H., and Koob, G. F. (1998) Transition from moderate to excessive drug intake: change in hedonic set point. Science 282, 298–300.

    PubMed  CrossRef  CAS  Google Scholar 

  20. Heyser, C. J., Schulteis, G., and Koob, G. F. (1997) Increased ethanol self-administration after a period of imposed ethanol deprivation in rats trained in a limited access paradigm. Alcohol Clin Exp Res 21, 784–91.

    PubMed  CrossRef  CAS  Google Scholar 

  21. Avena, N. M., Carrillo, C. A., Needham, L., Leibowitz, S. F., and Hoebel, B. G. (2004) Sugar-dependent rats show enhanced intake of unsweetened ethanol. Alcohol 34, 203–9.

    PubMed  CrossRef  CAS  Google Scholar 

  22. Avena, N. M., and Hoebel, B. G. (2003) A diet promoting sugar dependency causes behavioral cross-sensitization to a low dose of amphetamine. Neuroscience 122, 17–20.

    PubMed  CrossRef  CAS  Google Scholar 

  23. Avena, N. M., and Hoebel, B. G. (2003) Amphetamine-sensitized rats show sugar-induced hyperactivity (cross-sensitization) and sugar hyperphagia. Pharmacol Biochem Behav 74, 635–9.

    PubMed  CrossRef  CAS  Google Scholar 

  24. Colantuoni, C., Rada, P., McCarthy, J., Patten, C., Avena, N. M., Chadeayne, A., and Hoebel, B. G. (2002) Evidence that intermittent, excessive sugar intake causes endogenous opioid dependence. Obes Res 10, 478–88.

    PubMed  CrossRef  CAS  Google Scholar 

  25. Colantuoni, C., Schwenker, J., McCarthy, J., Rada, P., Ladenheim, B., Cadet, J. L., Schwartz, G. J., Moran, T. H., and Hoebel, B. G. (2001) Excessive sugar intake alters binding to dopamine and mu-opioid receptors in the brain. Neuroreport 12, 3549–52.

    PubMed  CrossRef  CAS  Google Scholar 

  26. Gosnell, B. A. (2005) Sucrose intake enhances behavioral sensitization produced by cocaine. Brain Res 1031, 194–201.

    PubMed  CrossRef  CAS  Google Scholar 

  27. Grimm, J. W., Fyall, A. M., and Osincup, D. P. (2005) Incubation of sucrose craving: effects of reduced training and sucrose pre-loading. Physiol Behav 84, 73–9.

    PubMed  CrossRef  CAS  Google Scholar 

  28. Rada, P., Avena, N. M., and Hoebel, B. G. (2005) Daily bingeing on sugar repeatedly releases dopamine in the accumbens shell. Neuroscience 134, 737–44.

    PubMed  CrossRef  CAS  Google Scholar 

  29. Wideman, C. H., Nadzam, G. R., and Murphy, H. M. (2005) Implications of an animal model of sugar addiction, withdrawal and relapse for human health. Nutr Neurosci 8, 269–76.

    PubMed  CrossRef  CAS  Google Scholar 

  30. Spangler, R., Wittkowski, K. M., Goddard, N. L., Avena, N. M., Hoebel, B. G., and Leibowitz, S. F. (2004) Opiate-like effects of sugar on gene expression in reward areas of the rat brain. Brain Res Mol Brain Res 124, 134–42.

    PubMed  CrossRef  CAS  Google Scholar 

  31. Hernandez, L., and Hoebel, B. G. (1988) Food reward and cocaine increase extracellular dopamine in the nucleus accumbens as measured by microdialysis. Life Sci 42, 1705–12.

    PubMed  CrossRef  CAS  Google Scholar 

  32. Hoebel, B. G., Hernandez, L., Schwartz, D. H., Mark, G. P., and Hunter, G. A. (1989) Microdialysis studies of brain norepinephrine, serotonin, and dopamine release during ingestive behavior: theoretical and clinical implications, in “The Psychobiology of Human Eating Disorders: Preclinical and Clinical Perspectives” (Schneider, L. H., Cooper, S. J., and Halmi, K. A., Eds.), Annals of the New York Academy of Sciences, New York. pp.171–91.

    Google Scholar 

  33. Koob, G. F. (1999) Drug reward and addiction, in “Fundamental Neuroscience” (Zigmond, M., Bloom, F. E., Landis, S. C., Roberts, J. L., and Squire, L. R., Eds.), Academic Press, San Diego pp. 1254–79.

    Google Scholar 

  34. Wise, R. A. (1998) Drug-activation of brain reward pathways. Drug Alcohol Depend 51, 13–22.

    PubMed  CrossRef  CAS  Google Scholar 

  35. Wise, R. A. (1997) Drug self-administration viewed as ingestive behaviour. Appetite 28, 1–5.

    PubMed  CrossRef  CAS  Google Scholar 

  36. Avena, N. M., Rada, P., Moise, N., and Hoebel, B. G. (2006) Sucrose sham feeding on a binge schedule releases accumbens dopamine repeatedly and eliminates the acetylcholine satiety response. Neuroscience 139, 813–20.

    PubMed  CrossRef  CAS  Google Scholar 

  37. Bassareo, V., and Di Chiara, G. (1997) Differential influence of associative and nonassociative learning mechanisms on the responsiveness of prefrontal and accumbal dopamine transmission to food stimuli in rats fed ad libitum. J Neurosci 17, 851–61.

    PubMed  CAS  Google Scholar 

  38. Avena, N. M., Bocarsly, M. E., Kim, A., Rada, P., and Hoebel, B. G. (2008) After daily bingeing on a sucrose solution, prolonged food deprivation induces anxiety and accumbens dopamine/acetylcholine imbalance. Physiol Behav 94, 309–15.

    Google Scholar 

  39. Rada, P., Jensen, K., and Hoebel, B. G. (2001) Effects of nicotine and mecamylamine-induced withdrawal on extracellular dopamine and acetylcholine in the rat nucleus accumbens. Psychopharmacology (Berl) 157, 105–10.

    CrossRef  CAS  Google Scholar 

  40. Rada, P., Johnson, D. F., Lewis, M. J., and Hoebel, B. G. (2004) In alcohol-treated rats, naloxone decreases extracellular dopamine and increases acetylcholine in the nucleus accumbens: evidence of opioid withdrawal. Pharmacol Biochem Behav 79, 599–605.

    PubMed  CrossRef  CAS  Google Scholar 

  41. Rada, P., Pothos, E., Mark, G. P., and Hoebel, B. G. (1991) Microdialysis evidence that acetylcholine in the nucleus accumbens is involved in morphine withdrawal and its treatment with clonidine. Brain Res 561, 354–6.

    PubMed  CrossRef  CAS  Google Scholar 

  42. Rada, P. V., Mark, G. P., Taylor, K. M., and Hoebel, B. G. (1996) Morphine and naloxone, i.p. or locally, affect extracellular acetylcholine in the accumbens and prefrontal cortex. Pharmacol Biochem Behav 53, 809–16.

    PubMed  CrossRef  CAS  Google Scholar 

  43. Avena, N. M., Long, K. A., and Hoebel, B. G. (2005) Sugar-dependent rats show enhanced responding for sugar after abstinence: evidence of a sugar deprivation effect. Physiol Behav 84, 359–62.

    PubMed  CrossRef  CAS  Google Scholar 

  44. American Psychiatric Association (2000) Diag­nostic and Statistical Manual of Mental Disorders Fourth Edition Text Revision (DSM-IV-TR), American Psychiatric Association, Washington, DC.

    Google Scholar 

  45. Corwin, R. L., Wojnicki, F. H., Fisher, J. O., Dimitriou, S. G., Rice, H. B., and Young, M. A. (1998) Limited access to a dietary fat option affects ingestive behavior but not body composition in male rats. Physiol Behav 65, 545–53.

    PubMed  CrossRef  CAS  Google Scholar 

  46. Dimitriou, S. G., Rice, H. B., and Corwin, R. L. (2000) Effects of limited access to a fat option on food intake and body composition in female rats. Int J Eat Disord 28, 436–45.

    PubMed  CrossRef  CAS  Google Scholar 

  47. Boggiano, M. M., Chandler, P. C., Viana, J. B., Oswald, K. D., Maldonado, C. R., and Wauford, P. K. (2005) Combined dieting and stress evoke exaggerated responses to opioids in binge-eating rats. Behav Neurosci 119, 1207–14.

    PubMed  CrossRef  CAS  Google Scholar 

  48. Boggiano, M. M., and Chandler, P. C. (2006) Binge eating in rats produced by combining dieting with stress. Curr Protoc Neurosci Chapter 9, Unit9 23A.

    Google Scholar 

  49. Berner, L. A., Avena, N. M., and Hoebel, B. G. (2008) Bingeing, Self-restriction, and Increased Body Weight in Rats With Limited Access to a Sweet-fat Diet. Obesity (Silver Spring) 16, 1998–2002.

    Google Scholar 

  50. Berner, L. A., Bocarsly, M. E., Hoebel, B. G., and Avena, N. M. (2009) Baclofen suppresses binge eating of pure fat but not a sugar-rich or sweet-fat diet. Behav Pharmacol 20, 631–4.

    Google Scholar 

  51. Allison, S., and Timmerman, G. M. (2007) Anatomy of a binge: food environment and characteristics of nonpurge binge episodes. Eat Behav 8, 31–8.

    PubMed  CrossRef  Google Scholar 

  52. Guertin, T. L., and Conger, A. J. (1999) Mood and forbidden foods’ influence on perceptions of binge eating. Addict Behav 24, 175–93.

    PubMed  CrossRef  CAS  Google Scholar 

  53. Hadigan, C. M., Kissileff, H. R., and Walsh, B. T. (1989) Patterns of food selection during meals in women with bulimia. Am J Clin Nutr 50, 759–66.

    PubMed  CAS  Google Scholar 

  54. Kales, E. F. (1990) Macronutrient analysis of binge eating in bulimia. Physiol Behav 48, 837–40.

    PubMed  CrossRef  CAS  Google Scholar 

  55. Kelley, A. E., Will, M. J., Steininger, T. L., Zhang, M., and Haber, S. N. (2003) Restricted daily consumption of a highly palatable food (chocolate Ensure(R)) alters striatal enkephalin gene expression. Eur J Neurosci 18, 2592–8.

    PubMed  CrossRef  CAS  Google Scholar 

  56. Liang, N. C., Hajnal, A., and Norgren, R. (2006) Sham feeding corn oil increases accumbens dopamine in the rat. Am J Physiol Regul Integr Comp Physiol 291, R1236–9.

    Google Scholar 

  57. Teegarden, S. L., and Bale, T. L. (2007) Decreases in dietary preference produce increased emotionality and risk for dietary relapse. Biol Psychiatry 61, 1021–9.

    PubMed  CrossRef  Google Scholar 

  58. Teegarden, S. L., Nestler, E. J., and Bale, T. L. (2008) Delta FosB-mediated alterations in dopamine signaling are normalized by a palatable high-fat diet. Biol Psychiatry 64, 941–50.

    PubMed  CrossRef  CAS  Google Scholar 

  59. Johnson, P. M., and Kenny, P. J. (2010) Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 13, 635–41.

    Google Scholar 

  60. Cottone, P., Sabino, V., Steardo, L., and Zorrilla, E. P. (2009) Consummatory, anxiety-related and metabolic adaptations in female rats with alternating access to preferred food. Psychoneuroendocrinology 34, 38–49.

    PubMed  CrossRef  CAS  Google Scholar 

  61. Corwin, R. L., and Buda-Levin, A. (2004) Behavioral models of binge-type eating. Physiol Behav 82, 123–30.

    PubMed  CrossRef  CAS  Google Scholar 

  62. Mazda, T., Yamamoto, H., Fujimura, M., and Fujimiya, M. (2004) Gastric distension-induced release of 5-HT stimulates c-fos expression in specific brain nuclei via 5-HT3 receptors in conscious rats. Am J Physiol Gastrointest Liver Physiol 287, G228–35.

    PubMed  CrossRef  CAS  Google Scholar 

  63. Avena, N. M., Rada, P., and Hoebel, B. G. (2008) Underweight rats have enhanced dopamine release and blunted acetylcholine response in the nucleus accumbens while bingeing on sucrose. Neuroscience 156, 865–71.

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Acknowledgments

Supported by USPHS grants MH-65024 (to B.G.H. et al.), DA-10608 (to B.G.H.), DA-031230 (to N.M.A), AA-019623 (fellowship to M.E.B), and the National Eating Disorders Association (to N.M.A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole M. Avena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Avena, N.M., Bocarsly, M.E., Hoebel, B.G. (2012). Animal Models of Sugar and Fat Bingeing: Relationship to Food Addiction and Increased Body Weight. In: Kobeissy, F. (eds) Psychiatric Disorders. Methods in Molecular Biology, vol 829. Humana Press. https://doi.org/10.1007/978-1-61779-458-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-458-2_23

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-457-5

  • Online ISBN: 978-1-61779-458-2

  • eBook Packages: Springer Protocols