Astrocytes pp 23-45 | Cite as

Heterogeneity of Astrocytic Form and Function

  • Nancy Ann Oberheim
  • Steven A. GoldmanEmail author
  • Maiken Nedergaard
Part of the Methods in Molecular Biology book series (MIMB, volume 814)


Astrocytes participate in all essential CNS functions, including blood flow regulation, energy metabolism, ion and water homeostasis, immune defence, neurotransmission, and adult neurogenesis. It is thus not surprising that astrocytic morphology and function differ between regions, and that different subclasses of astrocytes exist within the same brain region. Recent lines of work also show that the complexity of protoplasmic astrocytes increases during evolution. Human astrocytes are structurally more complex, larger, and propagate calcium signals significantly faster than rodent astrocytes. In this chapter, we review the diversity of astrocytic form and function, while considering the markedly expanded roles of astrocytes with phylogenetic evolution. We also define major challenges for the future, which include determining how astrocytic functions are locally specified, defining the molecular controls upon astrocytic fate and physiology and establishing how evolutionary changes in astrocytes contribute to higher cognitive functions.

Key words

Astrocyte NG2 cell Glia Glia progenitor Potassium buffering Epilepsy Calcium signaling Purinergic receptors 



Work described in the authors’ labs was supported by grants from NINDS, as well as from the Adelson Medical Research Foundation, the Mathers Charitable foundation, the National Multiple Sclerosis Society, the Department of Defence, and the New York State Stem Cell Research Program (NYSTEM).


  1. 1.
    Virchow, R. L. K. (1858) Die cellularpathologie in ihrer begründung auf physiologische und pathologische gewebelehre, A. Hirschwald, Berlin,.Google Scholar
  2. 2.
    Golgi, C. (1871) Contribuzione alla fina Anatomia degli organi centrali del sistema nervosos., Rivista clinica di Bologna, Bologna.Google Scholar
  3. 3.
    Lenhossek, M. (1893) Der feinere Bau des Nervensystems im Lichte neuester Forschung, Fischer’s Medicinische Buchhandlung, Berlin.Google Scholar
  4. 4.
    Kölliker, A. (1889) Handbuch der gewebelehre des menschen, 6. umgearb. aufl. ed., n.p.Google Scholar
  5. 5.
    Andriezen, W. L. (1893) The neuroglia elements of the brain., BMJ 2, 227–230.PubMedCrossRefGoogle Scholar
  6. 6.
    Cajal, R. (1897) Histology of the Nervous System of Man and Vertebrates., Oxford University Press., Oxford.Google Scholar
  7. 7.
    Kettenmann, H., and Verkhratsky, A. (2008) Neuroglia: the 150 years after, Trends Neurosci 31, 653–659.PubMedCrossRefGoogle Scholar
  8. 8.
    Oberheim, N. A., Takano, T., Han, X., He, W., Lin, J. H., Wang, F., Xu, Q., Wyatt, J. D., Pilcher, W., Ojemann, J. G., Ransom, B. R., Goldman, S. A., and Nedergaard, M. (2009) Uniquely hominid features of adult human astrocytes, J Neurosci 29, 3276–3287.PubMedCrossRefGoogle Scholar
  9. 9.
    Oberheim, N. A., Wang, X., Goldman, S., and Nedergaard, M. (2006) Astrocytic complexity distinguishes the human brain, Trends Neurosci 29, 547–553.PubMedCrossRefGoogle Scholar
  10. 10.
    Nishiyama, A., Watanabe, M., Yang, Z., and Bu, J. (2002) Identity, distribution, and development of polydendrocytes: NG2-expressing glial cells, J Neurocytol 31, 437–455.PubMedCrossRefGoogle Scholar
  11. 11.
    Eng, L. F. (1985) Glial fibrillary acidic protein (GFAP): the major protein of glial intermediate filaments in differentiated astrocytes, J Neuroimmunol 8, 203–214.PubMedCrossRefGoogle Scholar
  12. 12.
    Kimelberg, H. K. (2004) The problem of astrocyte identity, Neurochem Int 45, 191–202.PubMedCrossRefGoogle Scholar
  13. 13.
    Mishima, T., and Hirase, H. (2010) In vivo intracellular recording suggests that gray matter astrocytes in mature cerebral cortex and hippocampus are electrophysiologically homogeneous, J Neurosci 30, 3093–3100.PubMedCrossRefGoogle Scholar
  14. 14.
    Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M., and Alvarez-Buylla, A. 1999. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716.CrossRefGoogle Scholar
  15. 15.
    Chojnacki, A. K., Mak, G. K., and Weiss, S. (2009) Identity crisis for adult periventricular neural stem cells: subventricular zone astrocytes, ependymal cells or both?, Nat Rev Neurosci 10, 153–163.Google Scholar
  16. 16.
    Matyash, V., and Kettenmann, H. (2009) Heterogeneity in astrocyte morphology and physiology, Brain Res Rev.Google Scholar
  17. 17.
    Emsley, J. G., and Macklis, J. D. (2006) Astroglial heterogeneity closely reflects the neuronal-defined anatomy of the adult murine CNS, Neuron Glia Biol 2, 175–186.PubMedCrossRefGoogle Scholar
  18. 18.
    Bushong, E. A., Martone, M. E., Jones, Y. Z., and Ellisman, M. H. (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains, J Neurosci 22, 183–192.PubMedGoogle Scholar
  19. 19.
    Ogata, K., and Kosaka, T. (2002) Structural and quantitative analysis of astrocytes in the mouse hippocampus, Neuroscience 113, 221–233.PubMedCrossRefGoogle Scholar
  20. 20.
    Livet, J., Weissman, T. A., Kang, H., Draft, R. W., Lu, J., Bennis, R. A., Sanes, J. R., and Lichtman, J. W. (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system, Nature 450, 56–62.PubMedCrossRefGoogle Scholar
  21. 21.
    Halassa, M. M., Fellin, T., Takano, H., Dong, J. H., and Haydon, P. G. (2007) Synaptic islands defined by the territory of a single astrocyte, J Neurosci 27, 6473–6477.PubMedCrossRefGoogle Scholar
  22. 22.
    Oberheim, N. A., Tian, G. F., Han, X., Peng, W., Takano, T., Ransom, B., and Nedergaard, M. (2008) Loss of astrocytic domain organization in the epileptic brain, J Neurosci 28, 3264–3276.PubMedCrossRefGoogle Scholar
  23. 23.
    Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., Yang, F., and Cole, G. (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice, Science 274, 99–102.PubMedCrossRefGoogle Scholar
  24. 24.
    Ransom, B. R., and Sontheimer, H. (1992) The neurophysiology of glial cells, J Clin Neurophysiol 9, 224–251.PubMedCrossRefGoogle Scholar
  25. 25.
    Lin, S. C., and Bergles, D. E. (2004) Synaptic signaling between neurons and glia, Glia 47, 290–298.PubMedCrossRefGoogle Scholar
  26. 26.
    Kuffler, S. W., Nicholls, J. G., and Orkand, R. K. (1966) Physiological properties of glial cells in the central nervous system of amphibia, J Neurophysiol 29, 768–787.PubMedGoogle Scholar
  27. 27.
    Orkand, R. K., Nicholls, J. G., and Kuffler, S. W. (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia, J Neurophysiol 29, 788–806.PubMedGoogle Scholar
  28. 28.
    Butt, A. M., and Kalsi, A. (2006) Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions, J Cell Mol Med 10, 33–44.PubMedCrossRefGoogle Scholar
  29. 29.
    Seifert, G., Huttmann, K., Binder, D. K., Hartmann, C., Wyczynski, A., Neusch, C., and Steinhauser, C. (2009) Analysis of astroglial K+ channel expression in the developing hippocampus reveals a predominant role of the Kir4.1 subunit, J Neurosci 29, 7474–7488.PubMedCrossRefGoogle Scholar
  30. 30.
    Kofuji, P., Ceelen, P., Zahs, K. R., Surbeck, L. W., Lester, H. A., and Newman, E. A. (2000) Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina, J Neurosci 20, 5733–5740.PubMedGoogle Scholar
  31. 31.
    Neusch, C., Papadopoulos, N., Muller, M., Maletzki, I., Winter, S. M., Hirrlinger, J., Handschuh, M., Bahr, M., Richter, D. W., Kirchhoff, F., and Hulsmann, S. (2006) Lack of the Kir4.1 channel subunit abolishes K+ buffering properties of astrocytes in the ventral respiratory group: impact on extracellular K+ regulation, J Neurophysiol 95, 1843–1852.PubMedCrossRefGoogle Scholar
  32. 32.
    Olsen, M. L., Campbell, S. L., and Sontheimer, H. (2007) Differential distribution of Kir4.1 in spinal cord astrocytes suggests regional differences in K+ homeostasis, J Neurophysiol 98, 786–793.PubMedCrossRefGoogle Scholar
  33. 33.
    Muller, T., Fritschy, J. M., Grosche, J., Pratt, G. D., Mohler, H., and Kettenmann, H. (1994) Developmental regulation of voltage-gated K+ channel and GABAA receptor expression in Bergmann glial cells, J Neurosci 14, 2503–2514.PubMedGoogle Scholar
  34. 34.
    Nishiyama, A., Lin, X. H., Giese, N., Heldin, C. H., and Stallcup, W. B. (1996) Co-localization of NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells in the developing rat brain, J Neurosci Res 43, 299–314.PubMedCrossRefGoogle Scholar
  35. 35.
    Roy, N. S., Wang, S., Harrison-Restelli, C., Benraiss, A., Fraser, R. A., Gravel, M., Braun, P. E., and Goldman, S. A. (1999) Identification, isolation, and promoter-defined separation of mitotic oligodendrocyte progenitor cells from the adult human subcortical white matter, J Neurosci 19, 9986–9995.PubMedGoogle Scholar
  36. 36.
    Nishiyama, A., Komitova, M., Suzuki, R., and Zhu, X. (2009) Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity, Nat Rev Neurosci 10, 9–22.PubMedCrossRefGoogle Scholar
  37. 37.
    Nunes, M. C., Roy, N. S., Keyoung, H. M., Goodman, R. R., McKhann, G., Jiang, L., Kang, J., Nedergaard, M., and Goldman, S. A. (2003) Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain, Nature Medicine 9, 439–447.PubMedCrossRefGoogle Scholar
  38. 38.
    Sim, F. J., McClain, C. R., Schanz, S. J., Protack, T. L., Windrem, M. S., and Goldman, S. A. (2011) CD140a identifies a population of highly myelinogenic, migration-competent and efficiently engrafting human oligodendrocyte progenitor cells, Nature biotechnology 29, 934–941.Google Scholar
  39. 39.
    Kukley, M., Capetillo-Zarate, E., and Dietrich, D. (2007) Vesicular glutamate release from axons in white matter, Nat Neurosci 10, 311–320.PubMedCrossRefGoogle Scholar
  40. 40.
    Bergles, D. E., Roberts, J. D., Somogyi, P., and Jahr, C. E. (2000) Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus, Nature 405, 187–191.PubMedCrossRefGoogle Scholar
  41. 41.
    Ge, W. P., Yang, X. J., Zhang, Z., Wang, H. K., Shen, W., Deng, Q. D., and Duan, S. (2006) Long-term potentiation of neuron-glia synapses mediated by Ca2+−permeable AMPA receptors, Science 312, 1533–1537.PubMedCrossRefGoogle Scholar
  42. 42.
    Ziskin, J. L., Nishiyama, A., Rubio, M., Fukaya, M., and Bergles, D. E. (2007) Vesicular release of glutamate from unmyelinated axons in white matter, Nat Neurosci 10, 321–330.PubMedCrossRefGoogle Scholar
  43. 43.
    Karadottir, R., Hamilton, N. B., Bakiri, Y., and Attwell, D. (2008) Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter, Nat Neurosci 11, 450–456.PubMedCrossRefGoogle Scholar
  44. 44.
    Chittajallu, R., Aguirre, A., and Gallo, V. (2004) NG2-positive cells in the mouse white and grey matter display distinct physiological properties, J Physiol 561, 109–122.PubMedCrossRefGoogle Scholar
  45. 45.
    Karram, K., Goebbels, S., Schwab, M., Jennissen, K., Seifert, G., Steinhauser, C., Nave, K. A., and Trotter, J. (2008) NG2-expressing cells in the nervous system revealed by the NG2-EYFP-knockin mouse, Genesis 46, 743–757.PubMedCrossRefGoogle Scholar
  46. 46.
    Sim, F., Lang, J., Waldau, B., Roy, N., Schwartz, T., Chandross, K., Natesan, S., Merrill, J., and Goldman, S. A. (2006) Complementary patterns of gene expression by adult human oligodendrocyte progenitor cells and their white matter environment., Ann. Neurology 59, 763–779.CrossRefGoogle Scholar
  47. 47.
    Sim, F. J., Windrem, M. S., and Goldman, S. A. (2009) Fate determination of adult human glial progenitor cells, Neuron Glia Biol 5, 45–55.PubMedCrossRefGoogle Scholar
  48. 48.
    Windrem, M. S., Nunes, M. C., Rashbaum, W. K., Schwartz, T. H., Goodman, R. A., McKhann, G., Roy, N. S., and Goldman, S. A. (2004) Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain, Nature Medicine 10, 93–97.PubMedCrossRefGoogle Scholar
  49. 49.
    Dimou, L., Simon, C., Kirchhoff, F., Takebayashi, H., and Gotz, M. (2008) Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex, J Neurosci 28, 10434–10442.PubMedCrossRefGoogle Scholar
  50. 50.
    Guo, F., Ma, J., McCauley, E., Bannerman, P., and Pleasure, D. (2009) Early postnatal proteolipid promoter-expressing progenitors produce multilineage cells in vivo, J Neurosci 29, 7256–7270.PubMedCrossRefGoogle Scholar
  51. 51.
    Zhu, X., Bergles, D. E., and Nishiyama, A. (2008) NG2 cells generate both oligodendrocytes and gray matter astrocytes, Development 135, 145–157.PubMedCrossRefGoogle Scholar
  52. 52.
    Zhu, X., Hill, R. A., and Nishiyama, A. (2008) NG2 cells generate oligodendrocytes and gray matter astrocytes in the spinal cord, Neuron Glia Biol 4, 19–26.PubMedCrossRefGoogle Scholar
  53. 53.
    Rivers, L. E., Young, K. M., Rizzi, M., Jamen, F., Psachoulia, K., Wade, A., Kessaris, N., and Richardson, W. D. (2008) PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice, Nat Neurosci 11, 1392–1401.PubMedCrossRefGoogle Scholar
  54. 54.
    Nedergaard, M., Takano, T., and Hansen, A. J. (2002) Beyond the role of glutamate as a neurotransmitter, Nat Rev Neurosci 3, 748–755.PubMedCrossRefGoogle Scholar
  55. 55.
    Regan, M. R., Huang, Y. H., Kim, Y. S., Dykes-Hoberg, M. I., Jin, L., Watkins, A. M., Bergles, D. E., and Rothstein, J. D. (2007) Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS, J Neurosci 27, 6607–6619.PubMedCrossRefGoogle Scholar
  56. 56.
    Rothstein, J. D., Dykes-Hoberg, M., Pardo, C. A., Bristol, L. A., Jin, L., Kuncl, R. W., Kanai, Y., Hediger, M. A., Wang, Y., Schielke, J. P., and Welty, D. F. (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate, Neuron 16, 675–686.PubMedCrossRefGoogle Scholar
  57. 57.
    Tanaka, K., Watase, K., Manabe, T., Yamada, K., Watanabe, M., Takahashi, K., Iwama, H., Nishikawa, T., Ichihara, N., Kikuchi, T., Okuyama, S., Kawashima, N., Hori, S., Takimoto, M., and Wada, K. (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1, Science 276, 1699–1702.PubMedCrossRefGoogle Scholar
  58. 58.
    Macnab, L. T., and Pow, D. V. (2007) Expression of the exon 9-skipping form of EAAT2 in astrocytes of rats, Neuroscience 150, 705–711.PubMedCrossRefGoogle Scholar
  59. 59.
    Cornell-Bell, A. H., Finkbeiner, S. M., Cooper, M. S., and Smith, S. J. (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling, Science 247, 470–473.PubMedCrossRefGoogle Scholar
  60. 60.
    Shigetomi, E., Kracun, S., Sofroniew, M. V., and Khakh, B. S. (2010) A genetically targeted optical sensor to monitor calcium signals in astrocyte processes, Nat Neurosci 13, 759–766.PubMedCrossRefGoogle Scholar
  61. 61.
    Cotrina, M. L., Lin, J. H., Alves-Rodrigues, A., Liu, S., Li, J., Azmi-Ghadimi, H., Kang, J., Naus, C. C., and Nedergaard, M. (1998) Connexins regulate calcium signaling by controlling ATP release, Proc Natl Acad Sci USA 95, 15735–15740.PubMedCrossRefGoogle Scholar
  62. 62.
    Kimelberg, H. K., Anderson, E., and Kettenmann, H. (1990) Swelling-induced changes in electrophysiological properties of cultured astrocytes and oligodendrocytes. II. Whole-cell currents, Brain Res 529, 262–268.PubMedCrossRefGoogle Scholar
  63. 63.
    Porter, J. T., and McCarthy, K. D. (1995) Adenosine receptors modulate [Ca2+]i in hippocampal astrocytes in situ, J Neurochem 65, 1515–1523.PubMedCrossRefGoogle Scholar
  64. 64.
    Kang, J., Jiang, L., Goldman, S. A., and Nedergaard, M. (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission, Nat Neurosci 1, 683–692.PubMedCrossRefGoogle Scholar
  65. 65.
    Duffy, S., and MacVicar, B. A. (1995) Adrenergic calcium signaling in astrocyte networks within the hippocampal slice, J Neurosci 15, 5535–5550.PubMedGoogle Scholar
  66. 66.
    Cotrina, M. L., Lin, J. H., Lopez-Garcia, J. C., Naus, C. C., and Nedergaard, M. (2000) ATP-mediated glia signaling, J Neurosci 20, 2835–2844.PubMedGoogle Scholar
  67. 67.
    Porter, J. T., and McCarthy, K. D. (1995) GFAP-positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca2+]i, Glia 13, 101–112.PubMedCrossRefGoogle Scholar
  68. 68.
    Parri, H. R., and Crunelli, V. (2003) The role of Ca2+ in the generation of spontaneous astrocytic Ca2+ oscillations, Neuroscience 120, 979–992.PubMedCrossRefGoogle Scholar
  69. 69.
    Parri, H. R., Gould, T. M., and Crunelli, V. (2001) Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation, Nat Neurosci 4, 803–812.PubMedCrossRefGoogle Scholar
  70. 70.
    Nett, W. J., Oloff, S. H., and McCarthy, K. D. (2002) Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity, J Neurophysiol 87, 528–537.PubMedGoogle Scholar
  71. 71.
    Zur Nieden, R., and Deitmer, J. W. (2006) The role of metabotropic glutamate receptors for the generation of calcium oscillations in rat hippocampal astrocytes in situ, Cereb Cortex 16, 676–687.PubMedCrossRefGoogle Scholar
  72. 72.
    Bekar, L. K., He, W., and Nedergaard, M. (2008) Locus coeruleus alpha-adrenergic-mediated activation of cortical astrocytes in vivo, Cereb Cortex 18, 2789–2795.PubMedCrossRefGoogle Scholar
  73. 73.
    Wang, X., Lou, N., Xu, Q., Tian, G. F., Peng, W. G., Han, X., Kang, J., Takano, T., and Nedergaard, M. (2006) Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo, Nat Neurosci 9, 816–823.PubMedCrossRefGoogle Scholar
  74. 74.
    Schummers, J., Yu, H., and Sur, M. (2008) Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex, Science 320, 1638–1643.PubMedCrossRefGoogle Scholar
  75. 75.
    Araque, A., Martin, E. D., Perea, G., Arellano, J. I., and Buno, W. (2002) Synaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices, J Neurosci 22, 2443–2450.PubMedGoogle Scholar
  76. 76.
    Bezzi, P., Carmignoto, G., Pasti, L., Vesce, S., Rossi, D., Rizzini, B. L., Pozzan, T., and Volterra, A. (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes, Nature 391, 281–285.PubMedCrossRefGoogle Scholar
  77. 77.
    Bowser, D. N., and Khakh, B. S. (2004) ATP excites interneurons and astrocytes to increase synaptic inhibition in neuronal networks, J Neurosci 24, 8606–8620.PubMedCrossRefGoogle Scholar
  78. 78.
    Perea, G., and Araque, A. (2005) Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes, J Neurosci 25, 2192–2203.PubMedCrossRefGoogle Scholar
  79. 79.
    Navarrete, M., and Araque, A. (2008) Endocannabinoids mediate neuron-astrocyte communication, Neuron 57, 883–893.PubMedCrossRefGoogle Scholar
  80. 80.
    Porter, J. T., and McCarthy, K. D. (1996) Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals, J Neurosci 16, 5073–5081.PubMedGoogle Scholar
  81. 81.
    Piet, R., and Jahr, C. E. (2007) Glutamatergic and purinergic receptor-mediated calcium transients in Bergmann glial cells, J Neurosci 27, 4027–4035.PubMedCrossRefGoogle Scholar
  82. 82.
    Beierlein, M., and Regehr, W. G. (2006) Brief bursts of parallel fiber activity trigger calcium signals in bergmann glia, J Neurosci 26, 6958–6967.PubMedCrossRefGoogle Scholar
  83. 83.
    Matyash, V., Filippov, V., Mohrhagen, K., and Kettenmann, H. (2001) Nitric oxide signals parallel fiber activity to Bergmann glial cells in the mouse cerebellar slice, Mol Cell Neurosci 18, 664–670.PubMedCrossRefGoogle Scholar
  84. 84.
    Kulik, A., Haentzsch, A., Luckermann, M., Reichelt, W., and Ballanyi, K. (1999) Neuron-glia signaling via alpha(1) adrenoceptor-mediated Ca(2+) release in Bergmann glial cells in situ, J Neurosci 19, 8401–8408.PubMedGoogle Scholar
  85. 85.
    Newman, E. A. (2005) Calcium increases in retinal glial cells evoked by light-induced neuronal activity, J Neurosci 25, 5502–5510.PubMedCrossRefGoogle Scholar
  86. 86.
    Rieger, A., Deitmer, J. W., and Lohr, C. (2007) Axon-glia communication evokes calcium signaling in olfactory ensheathing cells of the developing olfactory bulb, Glia 55, 352–359.PubMedCrossRefGoogle Scholar
  87. 87.
    Takata, N., and Hirase, H. (2008) Cortical layer 1 and layer 2/3 astrocytes exhibit distinct calcium dynamics in vivo, PLoS One 3, e2525.PubMedCrossRefGoogle Scholar
  88. 88.
    Shigetomi, E., Bowser, D. N., Sofroniew, M. V., and Khakh, B. S. (2008) Two forms of astrocyte calcium excitability have distinct effects on NMDA receptor-mediated slow inward currents in pyramidal neurons, J Neurosci 28, 6659–6663.PubMedCrossRefGoogle Scholar
  89. 89.
    Haas, B., Schipke, C. G., Peters, O., Sohl, G., Willecke, K., and Kettenmann, H. (2006) Activity-dependent ATP-waves in the mouse neocortex are independent from astrocytic calcium waves, Cereb Cortex 16, 237–246.PubMedCrossRefGoogle Scholar
  90. 90.
    Schipke, C. G., Boucsein, C., Ohlemeyer, C., Kirchhoff, F., and Kettenmann, H. (2002) Astrocyte Ca2+ waves trigger responses in microglial cells in brain slices, FASEB J 16, 255–257.PubMedGoogle Scholar
  91. 91.
    Beattie, E. C., Stellwagen, D., Morishita, W., Bresnahan, J. C., Ha, B. K., Von Zastrow, M., Beattie, M. S., and Malenka, R. C. (2002) Control of synaptic strength by glial TNFalpha, Science 295, 2282–2285.PubMedCrossRefGoogle Scholar
  92. 92.
    Cotrina, M. L., Lin, J. H., and Nedergaard, M. (1998) Cytoskeletal assembly and ATP release regulate astrocytic calcium signaling, J Neurosci 18, 8794–8804.PubMedGoogle Scholar
  93. 93.
    Parpura, V., Basarsky, T. A., Liu, F., Jeftinija, K., Jeftinija, S., and Haydon, P. G. (1994) Glutamate-mediated astrocyte-neuron signalling, Nature 369, 744–747.PubMedCrossRefGoogle Scholar
  94. 94.
    Zonta, M., Angulo, M. C., Gobbo, S., Rosengarten, B., Hossmann, K. A., Pozzan, T., and Carmignoto, G. (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation, Nat Neurosci 6, 43–50.PubMedCrossRefGoogle Scholar
  95. 95.
    Schell, M. J., Molliver, M. E., and Snyder, S. H. (1995) D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release, Proc Natl Acad Sci USA 92, 3948–3952.PubMedCrossRefGoogle Scholar
  96. 96.
    Stellwagen, D., and Malenka, R. C. (2006) Synaptic scaling mediated by glial TNF-alpha, Nature 440, 1054–1059.PubMedCrossRefGoogle Scholar
  97. 97.
    Pascual, O., Casper, K. B., Kubera, C., Zhang, J., Revilla-Sanchez, R., Sul, J. Y., Takano, H., Moss, S. J., McCarthy, K., and Haydon, P. G. (2005) Astrocytic purinergic signaling coordinates synaptic networks, Science 310, 113–116.PubMedCrossRefGoogle Scholar
  98. 98.
    Henneberger, C., Papouin, T., Oliet, S. H., and Rusakov, D. A. (2010) Long-term potentiation depends on release of D-serine from astrocytes, Nature 463, 232–236.PubMedCrossRefGoogle Scholar
  99. 99.
    Tian, G. F., Azmi, H., Takano, T., Xu, Q., Peng, W., Lin, J., Oberheim, N., Lou, N., Wang, X., Zielke, H. R., Kang, J., and Nedergaard, M. (2005) An astrocytic basis of epilepsy, Nat Med 11, 973–981.PubMedGoogle Scholar
  100. 100.
    Jourdain, P., Bergersen, L. H., Bhaukaurally, K., Bezzi, P., Santello, M., Domercq, M., Matute, C., Tonello, F., Gundersen, V., and Volterra, A. (2007) Glutamate exocytosis from astrocytes controls synaptic strength, Nat Neurosci 10, 331–339.PubMedCrossRefGoogle Scholar
  101. 101.
    Liu, Q. S., Xu, Q., Kang, J., and Nedergaard, M. (2004) Astrocyte activation of presynaptic metabotropic glutamate receptors modulates hippocampal inhibitory synaptic transmission, Neuron Glia Biol 1, 307–316.PubMedCrossRefGoogle Scholar
  102. 102.
    Liu, Q. S., Xu, Q., Arcuino, G., Kang, J., and Nedergaard, M. (2004) Astrocyte-mediated activation of neuronal kainate receptors, Proc Natl Acad Sci USA 101, 3172–3177.PubMedCrossRefGoogle Scholar
  103. 103.
    Brockhaus, J., and Deitmer, J. W. (2002) Long-lasting modulation of synaptic input to Purkinje neurons by Bergmann glia stimulation in rat brain slices, J Physiol 545, 581–593.PubMedCrossRefGoogle Scholar
  104. 104.
    Lee, S., Yoon, B. E., Berglund, K., Oh, S. J., Park, H., Shin, H. S., Augustine, G. J., and Lee, C. J. (2010) Channel-mediated tonic GABA release from glia, Science 330, 790–796.PubMedCrossRefGoogle Scholar
  105. 105.
    Kozlov, A. S., Angulo, M. C., Audinat, E., and Charpak, S. (2006) Target cell-specific modulation of neuronal activity by astrocytes, Proc Natl Acad Sci USA 103, 10058–10063.PubMedCrossRefGoogle Scholar
  106. 106.
    Newman, E. A., and Zahs, K. R. (1998) Modulation of neuronal activity by glial cells in the retina, J Neurosci 18, 4022–4028.PubMedGoogle Scholar
  107. 107.
    Newman, E. A. (2003) Glial cell inhibition of neurons by release of ATP, J Neurosci 23, 1659–1666.PubMedGoogle Scholar
  108. 108.
    Agulhon, C., Fiacco, T. A., and McCarthy, K. D. (2010) Hippocampal short- and long-term plasticity are not modulated by astrocyte Ca2+ signaling, Science 327, 1250–1254.PubMedCrossRefGoogle Scholar
  109. 109.
    Fiacco, T. A., Agulhon, C., Taves, S. R., Petravicz, J., Casper, K. B., Dong, X., Chen, J., and McCarthy, K. D. (2007) Selective stimulation of astrocyte calcium in situ does not affect neuronal excitatory synaptic activity, Neuron 54, 611–626.PubMedCrossRefGoogle Scholar
  110. 110.
    Petravicz, J., Fiacco, T. A., and McCarthy, K. D. (2008) Loss of IP3 receptor-dependent Ca2+ increases in hippocampal astrocytes does not affect baseline CA1 pyramidal neuron synaptic activity, J Neurosci 28, 4967–4973.PubMedCrossRefGoogle Scholar
  111. 111.
    Rouach, N., Avignone, E., Meme, W., Koulakoff, A., Venance, L., Blomstrand, F., and Giaume, C. (2002) Gap junctions and connexin expression in the normal and pathological central nervous system, Biol Cell 94, 457–475.PubMedCrossRefGoogle Scholar
  112. 112.
    Houades, V., Rouach, N., Ezan, P., Kirchhoff, F., Koulakoff, A., and Giaume, C. (2006) Shapes of astrocyte networks in the juvenile brain, Neuron Glia Biol 2, 3–14.PubMedCrossRefGoogle Scholar
  113. 113.
    Houades, V., Koulakoff, A., Ezan, P., Seif, I., and Giaume, C. (2008) Gap junction-mediated astrocytic networks in the mouse barrel cortex, J Neurosci 28, 5207–5217.PubMedCrossRefGoogle Scholar
  114. 114.
    Muller, T., Moller, T., Neuhaus, J., and Kettenmann, H. (1996) Electrical coupling among Bergmann glial cells and its modulation by glutamate receptor activation, Glia 17, 274–284.PubMedCrossRefGoogle Scholar
  115. 115.
    Wiencken-Barger, A. E., Djukic, B., Casper, K. B., and McCarthy, K. D. (2007) A role for Connexin43 during neurodevelopment, Glia 55, 675–686.PubMedCrossRefGoogle Scholar
  116. 116.
    Theis, M., Jauch, R., Zhuo, L., Speidel, D., Wallraff, A., Doring, B., Frisch, C., Sohl, G., Teubner, B., Euwens, C., Huston, J., Steinhauser, C., Messing, A., Heinemann, U., and Willecke, K. (2003) Accelerated hippocampal spreading depression and enhanced locomotory activity in mice with astrocyte-directed inactivation of connexin43, J Neurosci 23, 766–776.PubMedGoogle Scholar
  117. 117.
    Wallraff, A., Kohling, R., Heinemann, U., Theis, M., Willecke, K., and Steinhauser, C. (2006) The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus, J Neurosci 26, 5438–5447.PubMedCrossRefGoogle Scholar
  118. 118.
    Takano, T., Kang, J., Jaiswal, J. K., Simon, S. M., Lin, J. H., Yu, Y., Li, Y., Yang, J., Dienel, G., Zielke, H. R., and Nedergaard, M. (2005) Receptor-mediated glutamate release from volume sensitive channels in astrocytes, Proc Natl Acad Sci USA 102, 16466–16471.PubMedCrossRefGoogle Scholar
  119. 119.
    Ye, Z. C., Oberheim, N., Kettenmann, H., and Ransom, B. R. (2009) Pharmacological “cross-inhibition” of connexin hemichannels and swelling activated anion channels, Glia 57, 258–269.PubMedCrossRefGoogle Scholar
  120. 120.
    Ye, Z. C., Wyeth, M. S., Baltan-Tekkok, S., and Ransom, B. R. (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release, J Neurosci 23, 3588–3596.PubMedGoogle Scholar
  121. 121.
    Hewett, J. A. (2009) Determinants of regional and local diversity within the astroglial lineage of the normal central nervous system, J Neurochem 110, 1717–1736.PubMedCrossRefGoogle Scholar
  122. 122.
    Silver, J., and Miller, J. H. (2004) Regeneration beyond the glial scar, Nat Rev Neurosci 5, 146–156.PubMedCrossRefGoogle Scholar
  123. 123.
    Pekny, M., and Nilsson, M. (2005) Astrocyte activation and reactive gliosis, Glia 50, 427–434.PubMedCrossRefGoogle Scholar
  124. 124.
    Benediktsson, A. M., Schachtele, S. J., Green, S. H., and Dailey, M. E. (2005) Ballistic labeling and dynamic imaging of astrocytes in organotypic hippocampal slice cultures, J Neurosci Methods 141, 41–53.PubMedCrossRefGoogle Scholar
  125. 125.
    Hirrlinger, J., Hulsmann, S., and Kirchhoff, F. (2004) Astroglial processes show spontaneous motility at active synaptic terminals in situ, Eur J Neurosci 20, 2235–2239.PubMedCrossRefGoogle Scholar
  126. 126.
    Nishida, H., and Okabe, S. (2007) Direct astrocytic contacts regulate local maturation of dendritic spines, J Neurosci 27, 331–340.PubMedCrossRefGoogle Scholar
  127. 127.
    Oliet, S. H., Piet, R., and Poulain, D. A. (2001) Control of glutamate clearance and synaptic efficacy by glial coverage of neurons, Science 292, 923–926.PubMedCrossRefGoogle Scholar
  128. 128.
    Piet, R., Vargova, L., Sykova, E., Poulain, D. A., and Oliet, S. H. (2004) Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk, Proc Natl Acad Sci USA 101, 2151–2155.PubMedCrossRefGoogle Scholar
  129. 129.
    Levison, S. W., Young, G. M., and Goldman, J. E. (1999) Cycling cells in the adult rat neocortex preferentially generate oligodendroglia, J Neurosci Res 57, 435–446.PubMedCrossRefGoogle Scholar
  130. 130.
    Goldman, S. A., Zukhar, A., Barami, K., Mikawa, T., and Niedzwiecki, D. (1996) Ependymal/subependymal zone cells of postnatal and adult songbird brain generate both neurons and nonneuronal siblings in vitro and in vivo, J Neurobiol 30, 505–520.PubMedCrossRefGoogle Scholar
  131. 131.
    Gray, G., and Sanes, J. (1992) Lineage of radial glia in the chicken optic tectum, Development 114, 271–283.PubMedGoogle Scholar
  132. 132.
    Malatesta, P., Hack, M. A., Hartfuss, E., Kettenmann, H., Klinkert, W., Kirchhoff, F., and Gotz, M. (2003) Neuronal or glial progeny: regional differences in radial glia fate, Neuron 37, 751–764.PubMedCrossRefGoogle Scholar
  133. 133.
    Goldman, J. E. (1995) Lineage, migration, and fate determination of postnatal subventricular zone cells in the mammalian CNS, J Neurooncol 24, 61–64.PubMedCrossRefGoogle Scholar
  134. 134.
    Marshall, C. A., and Goldman, J. E. (2002) Subpallial dlx2-expressing cells give rise to astrocytes and oligodendrocytes in the cerebral cortex and white matter, J Neurosci 22, 9821–9830.PubMedGoogle Scholar
  135. 135.
    Beckervordersandforth, R., Tripathi, P., Ninkovic, J., Bayam, E., Lepier, A., Stempfhuber, B., Kirchhoff, F., Hirrlinger, J., Haslinger, A., Lie, D. C., Beckers, J., Yoder, B., Irmler, M., and Gotz, M. (2010) In vivo fate mapping and expression analysis reveals molecular hallmarks of prospectively isolated adult neural stem cells, Cell Stem Cell 7, 744–758.PubMedCrossRefGoogle Scholar
  136. 136.
    Ono, K., Takebayashi, H., Ikeda, K., Furusho, M., Nishizawa, T., Watanabe, K., and Ikenaka, K. (2008) Regional- and temporal-dependent changes in the differentiation of Olig2 progenitors in the forebrain, and the impact on astrocyte development in the dorsal pallium, Dev Biol 320, 456–468.PubMedCrossRefGoogle Scholar
  137. 137.
    Zhou, Q., and Anderson, D. J. (2002) The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification, Cell 109, 61–73.PubMedCrossRefGoogle Scholar
  138. 138.
    Zhou, Q., Wang, S., and Anderson, D. J. (2000) Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors, Neuron 25, 331–343.PubMedCrossRefGoogle Scholar
  139. 139.
    Masahira, N., Takebayashi, H., Ono, K., Watanabe, K., Ding, L., Furusho, M., Ogawa, Y., Nabeshima, Y., Alvarez-Buylla, A., Shimizu, K., and Ikenaka, K. (2006) Olig2-positive progenitors in the embryonic spinal cord give rise not only to motoneurons and oligodendrocytes, but also to a subset of astrocytes and ependymal cells, Dev Biol 293, 358–369.PubMedCrossRefGoogle Scholar
  140. 140.
    Hochstim, C., Deneen, B., Lukaszewicz, A., Zhou, Q., and Anderson, D. J. (2008) Identification of positionally distinct astrocyte subtypes whose identities are specified by a homeodomain code, Cell 133, 510–522.PubMedCrossRefGoogle Scholar
  141. 141.
    Retzius, G. (1894) Die neuroglia des Gehirns beim Menschen und bei Saeugethieren, Biol Untersuchungen 6, 1–28.Google Scholar
  142. 142.
    Colombo, J. A., and Reisin, H. D. (2004) Interlaminar astroglia of the cerebral cortex: a marker of the primate brain, Brain Res 1006, 126–131.PubMedCrossRefGoogle Scholar
  143. 143.
    Colombo, J. A., Yanez, A., Puissant, V., and Lipina, S. (1995) Long, interlaminar astroglial cell processes in the cortex of adult monkeys, J Neurosci Res 40, 551–556.PubMedCrossRefGoogle Scholar
  144. 144.
    Colombo, J. A. (1996) Interlaminar astroglial processes in the cerebral cortex of adult monkeys but not of adult rats, Acta Anat (Basel) 155, 57–62.CrossRefGoogle Scholar
  145. 145.
    Garcia-Marin, V., Garcia-Lopez, P., and Freire, M. (2007) Cajal’s contributions to glia research, Trends Neurosci 30, 479–487.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Nancy Ann Oberheim
    • 1
  • Steven A. Goldman
    • 2
    Email author
  • Maiken Nedergaard
    • 2
  1. 1.Center for Translational Neuromedicine, Departments of Neurology and NeurosurgeryUniversity of Rochester Medical CenterRochesterUSA
  2. 2.Departments of Neurology and Neurosurgery, Center for Translational NeuromedicineUniversity of Rochester Medical CenterRochesterUSA

Personalised recommendations