Proteomic Profiling of Cerebrospinal Fluid

Protocol
Part of the Neuromethods book series (NM, volume 64)

Abstract

Cerebrospinal fluid (CSF) is a body fluid which has direct contact with the central nervous system, and as such, changes in its composition might be informative about various aspects of the brain. It has been postulated for quite a long time that proteomic analysis of CSF will reveal protein markers related to neurological disorders, their prognosis and early detection, efficacy of treatment, etc. Several proteomic profiling platforms provide tools to determine changes occurring in protein profiles of CSF reflecting physiological and pathological changes. Two major strategies are used. The first strategy is based on determining quantitative changes at the level of intact proteins followed by protein identification by tandem mass spectrometry of in-gel-digested protein spots. Usually, two-dimensional gel electrophoresis with DIGE technology is used. The second strategy is based on tryptic digestion of entire sample, labeling resulting peptides with mass tags and determining quantitative changes in protein content based on relative ratios of peptides. Typically iTRAQ® technology is used. Regardless of the strategy used, samples of CSF need to be simplified by removing most abundant proteins constituting more than 90% of a total pool of proteins. Detailed protocols are presented in this chapter.

Key words

Proteomics Neuroproteomics Biomarkers CSF Plasma 2-DE DIGE iTRAQ Sample fractionation 

References

  1. 1.
    Tsunoda, A., H. Mitsuoka, H. Bandai, T. Endo, H. Arai, and K. Sato. 2002. Intracranial cerebrospinal fluid measurement studies in suspected idiopathic normal pressure hydrocephalus, secondary normal pressure hydrocephalus, and brain atrophy. J Neurol Neurosurg Psychiatry 73, 552–555.PubMedCrossRefGoogle Scholar
  2. 2.
    Silverberg, G. D., M. Mayo, T. Saul, J. Carvalho, and D. McGuire. 2004. Novel ventriculo-peritoneal shunt in Alzheimer’s disease cerebrospinal fluid biomarkers. Expert Rev Neurother 4, 97–107.PubMedCrossRefGoogle Scholar
  3. 3.
    Wittke, S., H. Mischak, M. Walden, W. Kolch, T. Radler, and K. Wiedemann. 2005. Discovery of biomarkers in human urine and cerebrospinal fluid by capillary electrophoresis coupled to mass spectrometry: towards new diagnostic and therapeutic approaches. Electrophoresis 26, 1476–1487.PubMedCrossRefGoogle Scholar
  4. 4.
    Ogata, Y., M. C. Charlesworth, and D. C. Muddiman. 2005. Evaluation of protein depletion methods for the analysis of total-, phospho- and glycoproteins in lumbar cerebrospinal fluid. J Proteome Res 4, 837–845.PubMedCrossRefGoogle Scholar
  5. 5.
    Johnston, I., and C. Teo. 2000. Disorders of CSF hydrodynamics. Childs Nerv Syst 16, 776–799.PubMedCrossRefGoogle Scholar
  6. 6.
    Maurer, M. H. 2010. Proteomics of brain extracellular fluid (ECF) and cerebrospinal fluid (CSF). Mass Spectrom Rev. 29, 17–28.PubMedGoogle Scholar
  7. 7.
    Yuan, X., and D. M. Desiderio. 2003. Proteomics analysis of phosphotyrosyl-proteins in human lumbar cerebrospinal fluid. J Proteome Res 2, 476–487.PubMedCrossRefGoogle Scholar
  8. 8.
    Yuan, X., and D. M. Desiderio. 2005. Proteomics analysis of human cerebrospinal fluid. J Chromatogr B Analyt Technol Biomed Life Sci 815, 179–189.PubMedCrossRefGoogle Scholar
  9. 9.
    Rozek, W., M. Ricardo-Dukelow, S. Holloway, H. E. Gendelman, V. Wojna, L. Melendez, and P. Ciborowski. 2007. Cerebrospinal fluid proteomic profiling of HIV-1-infected patients with cognitive impairment. J Proteome Res 6, 4189–99.PubMedCrossRefGoogle Scholar
  10. 10.
    Ciborowski, P. 2009. Biomarkers of HIV-1-associated neurocognitive disorders: challenges of proteomic approaches. Biomark Med 3, 771–785.PubMedCrossRefGoogle Scholar
  11. 11.
    Lucchi, G., J. B. Hendra, D. Pecqueur, and P. Ducoroy. 2007. [Towards a standardization of the tools for the studies of clinical proteomics]. Med Sci (Paris) Spec No 1, 19–22.Google Scholar
  12. 12.
    Oberg, A. L., D. W. Mahoney, J. E. Eckel-Passow, C. J. Malone, R. D. Wolfinger, E. G. Hill, L. T. Cooper, O. K. Onuma, C. Spiro, T. M. Therneau, and H. R. Bergen, 3 rd. 2008. Statistical analysis of relative labeled mass spectrometry data from complex samples using ANOVA. J Proteome Res 7, 225–233.Google Scholar
  13. 13.
    Storey, J. D., and R. Tibshirani. 2003. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100, 9440–9445.PubMedCrossRefGoogle Scholar
  14. 14.
    Oh, J. H., S. Pan, J. Zhang, and J. Gao. 2010. MSQ: a tool for quantification of proteomics data generated by a liquid chromatography/matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry based targeted quantitative proteomics platform. Rapid Commun Mass Spectrom 24, 403–408.PubMedCrossRefGoogle Scholar
  15. 15.
    Pan, S., J. Rush, E. R. Peskind, D. Galasko, K. Chung, J. Quinn, J. Jankovic, J. B. Leverenz, C. Zabetian, C. Pan, Y. Wang, J. H. Oh, J. Gao, J. Zhang, T. Montine, and J. Zhang. 2008. Application of targeted quantitative proteomics analysis in human cerebrospinal fluid using a liquid chromatography matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (LC MALDI TOF/TOF) platform. J Proteome Res 7, 720–730.PubMedCrossRefGoogle Scholar
  16. 16.
    Silberring, J., and P. Ciborowski. Biomarker discovery and clinical proteomics. Trends Analyt Chem 29, 128.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.University of Nebraska Medical CenterOmahaUSA
  2. 2.Mass Spectrometry and Proteomics Core Facility, Durham Research CenterUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations