Recombinant Protein Production in Yeasts

  • Diethard Mattanovich
  • Paola Branduardi
  • Laura Dato
  • Brigitte Gasser
  • Michael Sauer
  • Danilo PorroEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 824)


Recombinant protein production is a multibillion-dollar market. The development of a new product begins with the choice of a production host. While one single perfect host for every protein does not exist, several expression systems ranging from bacterial hosts to mammalian cells have been established. Among them, yeast cell factories combine the advantages of being single cells, such as fast growth and easy genetic manipulation, as well as eukaryotic features including a secretory pathway leading to correct protein processing and post-translational modifications. In this respect, especially the engineering of yeast glycosylation to produce glycoproteins of human-like glycan structures is of great interest. Additionally, different attempts of cellular engineering as well as the design of different production processes that are leading to improved productivities are presented. With the advent of cheaper next-generation sequencing techniques, systems biotechnology approaches focusing on genome scale analyses will advance and accelerate yeast cell factories and thus recombinant protein production processes in the near future. In this review we summarize advantages and limitations of the main and most promising yeast hosts, including Saccharomyces cerevisiae, Pichia pastoris, and Hansenula polymorpha as those presently used in large scale production of heterologous proteins.

Key words

Yeast Heterologous proteins Expression Industrial Biotechnology 



This work has been supported by the Austrian BMWFJ, BMVIT, SFG, Standortagentur Tirol and ZIT through the Austrian FFG-COMET- Funding Program and by FAR 2010 to DP and SYSINBIO to PB.


  1. 1.
    Goodman, M. (2009) Market watch: Sales of biologics to show robust growth through to 2013. Nat. Rev. Drug Discov. 8, 837.PubMedCrossRefGoogle Scholar
  2. 2.
    Macdonald, G. (2009) Bio drugs to dominate top ten list by 2014. In-Pharma Technologist. Accessed 15 October 2010.
  3. 3.
    Freedonia Group (2009) World Enzymes to 2013. The Freedonia Group, Inc.Google Scholar
  4. 4.
    Ferrer-Miralles, N., Domingo-Espín, J., Corchero, J., Vázquez, E., and Villaverde, A. (2009) Microbial factories for recombinant pharmaceuticals. Microb. Cell Fact. 8, 17.PubMedCrossRefGoogle Scholar
  5. 5.
    Panda, A.K. (2003) Bioprocessing of therapeutic proteins from the inclusion bodies of Escherichia coli. Adv. Biochem. Eng. Biotechnol. 85, 43–93.PubMedGoogle Scholar
  6. 6.
    Tripathi, N.K., Sathyaseelan, K., Jana, A.M., and Rao, P.V.L. (2009) High yield production of heterologous proteins with Escherichia coli. Defence Science Journal 59, 137–146.Google Scholar
  7. 7.
    Ni, Y., and Chen, R. (2009) Extracellular recombinant protein production from Escherichia coli. Biotechnol. Lett. 31, 1661–1670.PubMedCrossRefGoogle Scholar
  8. 8.
    Pandhal, J., and Wright, P.C. (2010) N-Linked glycoengineering for human therapeutic proteins in bacteria. Biotechnol. Lett. 32, 1189–1198.PubMedCrossRefGoogle Scholar
  9. 9.
    Hitzeman, R.A., Hagie, F.E., Levine, H.L., Goeddel, D.V., Ammerer, G., and Hall, B.D. (1981) Expression of a human gene for interferon in yeast. Nature 293, 717–722.PubMedCrossRefGoogle Scholar
  10. 10.
    Reiser, J., Glumoff, V., Kalin, M., and Ochsner, U. (1990) Transfer and expression of heterologous genes in yeasts other than Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol. 43, 75–102.PubMedGoogle Scholar
  11. 11.
    Romanos, M.A., Scorer, C.A., and Clare, J.J. (1992) Foreign gene expression in yeast: a review. Yeast 8, 423–488.PubMedCrossRefGoogle Scholar
  12. 12.
    Porro, D., Venturini, M., Brambilla, L., Alberghina, L., and Vanoni, M. (2000) Relating growth dynamics and glucoamylase excretion of individual Saccharomyces cerevisiae cells. J. Microbiol. Methods 42, 49–55.PubMedCrossRefGoogle Scholar
  13. 13.
    Sudbery, P.E., Gleeson, M.A., Veale, R.A., Ledeboer, A.M., and Zoetmulder, M.C. (1988) Hansenula polymorpha as a novel yeast system for the expression of heterologous genes. Biochem. Soc. Trans. 16, 1081–1083.PubMedGoogle Scholar
  14. 14.
    van Dijk, R., Faber, K.N., Kiel, J.A., Veenhuis, M., and van der Klei, I. (2000) The methylotrophic yeast Hansenula polymorpha: a versatile cell factory. Enzyme Microb. Technol. 26, 793–800.PubMedCrossRefGoogle Scholar
  15. 15.
    Gellissen, G., Kunze, G., Gaillardin, C., Cregg, J.M., Berardi, E., Veenhuis, M., and van der Klei, I. (2005) New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica - a comparison. FEMS Yeast Res. 5, 1079–1096.PubMedCrossRefGoogle Scholar
  16. 16.
    Cregg, J.M., Cereghino, J.L., Shi, J., and Higgins, D.R. (2000) Recombinant protein expression in Pichia pastoris. Mol. Biotechnol. 16, 23–52.PubMedCrossRefGoogle Scholar
  17. 17.
    Macauley-Patrick, S., Fazenda, M.L., McNeil, B., and Harvey, L.M. (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22, 249–270.PubMedCrossRefGoogle Scholar
  18. 18.
    van Ooyen, A., Dekker, P., Huang, M., Olsthoorn, M., Jacobs, D., Colussi, P., and Taron, C. (2006) Heterologous protein production in the yeast Kluyveromyces lactis. FEMS Yeast Res. 6, 381–392.PubMedCrossRefGoogle Scholar
  19. 19.
    Fonseca, G.G., Heinzle, E., Wittmann, C., and Gombert, A.K. (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl. Microbiol. Biotechnol. 79, 339–354.PubMedCrossRefGoogle Scholar
  20. 20.
    Madzak, C., Gaillardin, C., and Beckerich, J.M. (2004) Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review. J. Biotechnol. 109, 63–81.PubMedCrossRefGoogle Scholar
  21. 21.
    Boer, E., Piontek, M., and Kunze, G. (2009) Xplor 2--an optimized transformation/expression system for recombinant protein production in the yeast Arxula adeninivorans. Appl. Microbiol. Biotechnol. 84, 583–594.PubMedCrossRefGoogle Scholar
  22. 22.
    Stockmann, C., Scheidle, M., Dittrich, B., et al. (2009) Process development in Hansenula polymorpha and Arxula adeninivorans, a re-assessment. Microb. Cell Fact. 8: 22.PubMedCrossRefGoogle Scholar
  23. 23.
    Raymond, C.K., Bukowski, T., Holderman, S.D., Ching, A.F., Vanaja, E., and Stamm, M.R. (1998) Development of the methylotrophic yeast Pichia methanolica for the expression of the 65 kilodalton isoform of human glutamate decarboxylase. Yeast 14, 11–23.PubMedCrossRefGoogle Scholar
  24. 24.
    Takegawa, K., Tohda, H., Sasaki, M., et al. (2009) Production of heterologous proteins using the fission-yeast (Schizosaccharomyces pombe) expression system. Biotechnol. Appl. Biochem. 53, 227–235.PubMedCrossRefGoogle Scholar
  25. 25.
    Dato, L., Branduardi, P., Passolunghi, S., Cattaneo, D., Riboldi, L., Frascotti, G., Valli, M., and Porro, D. (2010) Advances in the development of Zygosaccharomyces bailii as host for biotechnological productions and construction of the first auxotrophic mutant. FEMS Yeast Res. 10, 894–908.PubMedCrossRefGoogle Scholar
  26. 26.
    Ogawa, Y., Tatsumi, H., Murakami, S., Ishida, Y., Murakami, K., Masaki, A., Kawabe, H., Arimura, H., Nakano, E., Motai, H., et al. 1990. Secretion of Aspergillus oryzae alkaline protease in an osmophilic yeast, Zygosaccharomyces rouxii. Agric. Biol. Chem. 54, 2521–2529.PubMedCrossRefGoogle Scholar
  27. 27.
    Den Haan, R. and Van Zyl, W.H. (2001) Differential expression of the Trichoderma reesei beta-xylanase II (xyn2) gene in the xylose-fermenting yeast Pichia stipitis. Appl. Microbiol. Biotechnol. 57, 521–527.CrossRefGoogle Scholar
  28. 28.
    Buckholz, R.G., and Gleeson, M.A. (1991) Yeast systems for the commercial production of heterologous proteins. Biotechnology (N Y) 9, 1067–1072.CrossRefGoogle Scholar
  29. 29.
    Gellissen, G., and Hollenberg, C.P. (1997) Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis – a review. Gene 190, 87–97.PubMedCrossRefGoogle Scholar
  30. 30.
    Dominguez, A., Ferminan, E., Sanchez, M., Gonzalez, F.J., Perez-Campo, F.M., Garcia, S., Herrero, A.B., San Vicente, A., Cabello, J., Prado, M., Iglesias, F.J., Choupina, A., Burguillo, F.J., Fernandez-Lago, L., and Lopez, M.C. (1998) Non-conventional yeasts as hosts for heterologous protein production. Int. Microbiol. 1, 131–142.PubMedGoogle Scholar
  31. 31.
    Cereghino, G.P., and Cregg, J.M. (1999) Applications of yeast in biotechnology: protein production and genetic analysis. Curr. Opin. Biotechnol. 10, 422–427.PubMedCrossRefGoogle Scholar
  32. 32.
    Boer, E., Steinborn, G., Kunze, G., and Gellissen, G. (2007) Yeast expression platforms. Appl. Microbiol. Biotechnol. 77, 513–523.PubMedCrossRefGoogle Scholar
  33. 33.
    Rocha, S.N., Abrahao-Neto, J., Cerdan, M.E., Gonzalez-Siso, M.I. and Gombert, A.K. (2010) Heterologous expression of glucose oxidase in the yeast Kluyveromyces marxianus. Microb. Cell Fact. 9: 4.PubMedCrossRefGoogle Scholar
  34. 34.
    Kurtzman, C.P. (2003) Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res. 4, 233–245.CrossRefGoogle Scholar
  35. 35.
    Makdesi, A.K., and Beuchat, L.R. (1996) Evaluation of media for enumerating heat-stressed, benzoate-resistant Zygosaccha-romyces bailii. Int. J. Food Microbiol. 33, 169–181.PubMedCrossRefGoogle Scholar
  36. 36.
    Sousa, M.J., Miranda, L., Corte-Real, M., and Leao, C. (1996) Transport of acetic acid in Zygosaccharomyces bailii: effects of ethanol and their implications on the resistance of the yeast to acidic environments. Appl. Environ. Microbiol. 62, 3152–3157.PubMedGoogle Scholar
  37. 37.
    Wegener, G.H., and Harder, W. (1987) Methylotrophic yeasts–1986. Antonie van Leeuwenhoek 53, 29–36.CrossRefGoogle Scholar
  38. 38.
    Thill, G., Davis, G., Stillman, C., et al. (1987) The methylotrophic yeast Pichia pastoris as a host for heterologous protein production. In: Microbial growth on C1 compounds. Eds: (van Verseveld, H., Duine, W., Nijhoff, J.A., eds.) Dordrecht, pp. 289–296.Google Scholar
  39. 39.
    Yurimoto, H. (2009) Molecular basis of methanol-inducible gene expression and its application in the methylotrophic yeast Candida boidinii. Biosci. Biotechnol. Biochem. 73, 793–800.PubMedCrossRefGoogle Scholar
  40. 40.
    Yurimoto, H., and Sakai, Y. (2009) Methanol-inducible gene expression and heterologous protein production in the methylotrophic yeast Candida boidinii. Biotechnol. Appl. Biochem. 53, 85–92.PubMedCrossRefGoogle Scholar
  41. 41.
    Kuroda, K., Kobayashi, K., Tsumura, H., Komeda, T., Chiba, Y., and Jigami, Y. (2006) Production of Man5GlcNAc2-type sugar chain by the methylotrophic yeast Ogataea minuta. FEMS Yeast Res. 6, 1052–1062.PubMedCrossRefGoogle Scholar
  42. 42.
    Hartner, F.S., Ruth, C., Langenegger, D., et al. (2008) Promoter library designed for fine-tuned gene expression in Pichia pastoris. Nucleic Acids Res. 36, e76.PubMedCrossRefGoogle Scholar
  43. 43.
    Shen, S., Sulter, G., Jeffries, T.W., and Cregg, J.M. (1998) A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia pastoris. Gene 216, 93–102.PubMedCrossRefGoogle Scholar
  44. 44.
    Resina, D., Serrano, A., Valero, F., and Ferrer, P. (2004) Expression of a Rhizopus oryzae lipase in Pichia pastoris under control of the nitrogen source-regulated formaldehyde dehydrogenase promoter. J. Biotechnol. 109, 103–113.PubMedCrossRefGoogle Scholar
  45. 45.
    Waterham, H.R., Digan, M.E., Koutz, P.J., Lair, S.V., and Cregg, J.M. (1997) Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186, 37–44.PubMedCrossRefGoogle Scholar
  46. 46.
    Hollenberg, C.P., and Gellissen, G. (1997) Production of recombinant proteins by methylotrophic yeasts. Curr. Opin. Biotechnol. 8, 554–560.PubMedCrossRefGoogle Scholar
  47. 47.
    De Schutter, K., Lin, Y.C., Tiels, P., et al. (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat. Biotechnol. 27, 561–566.PubMedCrossRefGoogle Scholar
  48. 48.
    Mattanovich, D., Graf, A., Stadlmann, J., et al. (2009) Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris. Microb. Cell. Fact. 8, 29.PubMedCrossRefGoogle Scholar
  49. 49.
    Ramezani-Rad, M., Hollenberg, C.P., Lauber, J., et al. (2003) The Hansenula polymorpha (strain CBS4732) genome sequencing and analysis. FEMS Yeast Res. 4, 207–215.PubMedCrossRefGoogle Scholar
  50. 50.
    Burgers, P.M., and Percival, K.J. (1987) Transformation of yeast spheroplasts without cell fusion. Anal. Biochem. 163, 391–397.PubMedCrossRefGoogle Scholar
  51. 51.
    Gietz, R.D., and Woods, R.A. (2002) Trans-formation of Yeast by the LiAc/ss Carrier DNA/PEG. Method. Meth. in Enzymol. 350, 87–96.CrossRefGoogle Scholar
  52. 52.
    Sanchez, M., Iglesias, F.J., Santamaria, C., and Dominguez, A. (1993) Transformation of Kluyveromyces lactis by electroporation. Appl. Environm. Microbiol. 59, 2087–2092.Google Scholar
  53. 53.
    Goffeau, A., Barrell, B.G., Bussey, H., et al. (1996) Life with 6000 genes. Science 274, 563–547.CrossRefGoogle Scholar
  54. 54.
    Bergkamp, R.J., Kool, I.M., Geerse, R.H., and Planta, R.J. (1992) Multiple-copy integration of the alpha-galactosidase gene from Cyamopsis tetragonoloba into the ribosomal DNA of Kluyveromyces lactis. Curr. Genet. 21, 365–370.PubMedCrossRefGoogle Scholar
  55. 55.
    Liu, B., Gong, X., Chang, S., et al. (2009) Disruption of the OCH1 and MNN1 genes decrease N-glycosylation on glycoprotein expressed in Kluyveromyces lactis. J. Biotechnol. 143, 95–102.PubMedCrossRefGoogle Scholar
  56. 56.
    Dujon, B., Sherman, D., Fischer, G., et al. (2004) Genome evolution in yeasts. Nature 430, 35–44.PubMedCrossRefGoogle Scholar
  57. 57.
    Klabunde, J., Kunze, G., Gellissen, G., and Hollenberg, C.P. (2003) Integration of heterologous genes in several yeast species using vectors containing a Hansenula polymorpha-derived rDNA-targeting element. FEMS Yeast Res. 4, 185–193.PubMedCrossRefGoogle Scholar
  58. 58.
    Jeffries, T., Grigoriev, I., Grimwood, J., et al. (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat. Biotechnol. 25, 319–326.PubMedCrossRefGoogle Scholar
  59. 59.
    Le Dall, M.T., Nicaud, J.M., and Gaillardin, C. (1994) Multiple-copy integration in the yeast Yarrowia lipolytica. Curr. Genet. 26, 38–44.PubMedCrossRefGoogle Scholar
  60. 60.
    Song, Y., Choi, M.H., Park, J.N., Kim, M.W., Kim, E.J., Kang, H.A. and Kim, J.Y. (2007) Engineering of the yeast Yarrowia lipolytica for the production of glycoproteins lacking the outer-chain mannose residues of N-glycans. Appl. Environ. Microbiol. 73, 4446–4454.PubMedCrossRefGoogle Scholar
  61. 61.
    Wartmann, T., and Kunze, G. (2000) Genetic transformation and biotechnological application of the yeast Arxula adeninivorans. Appl Microbiol Biotechnol 54, 619–624.PubMedCrossRefGoogle Scholar
  62. 62.
    Marx, H., Mecklenbräuker, A., Gasser, B., Sauer, M., and Mattanovich, D. (2009) Directed gene copy number amplification in Pichia pastoris by vector integration into the ribosomal DNA locus. FEMS Yeast Res. 9, 1260–1270.PubMedCrossRefGoogle Scholar
  63. 63.
    Hamilton, S., and Gerngross, T. (2007) Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr. Opin. Biotechnol. 18, 387–392.PubMedCrossRefGoogle Scholar
  64. 64.
    Cox, H., Mead, D., Sudbery, P., Eland, R.M., Mannazzu, I., and Evans, L. (2000) Constitutive expression of recombinant proteins in the methylotrophic yeast Hansenula polymorpha using the PMA1 promoter. Yeast 16, 1191–1203.PubMedCrossRefGoogle Scholar
  65. 65.
    Oh, D.B., Park, J.S., Kim, M.W., et al. (2008) Glycoengineering of the methylotrophic yeast Hansenula polymorpha for the production of glycoproteins with trimannosyl core N-glycan by blocking core oligosaccharide assembly. Biotechnol. J. 3, 659–668.PubMedCrossRefGoogle Scholar
  66. 66.
    Hasslacher, M., Schall, M., Hayn, M., et al. (1997) High-level intracellular expression of hydroxynitrile lyase from the tropical rubber tree Hevea brasiliensis in microbial hosts. Protein Expr. Purif. 11, 61–71.PubMedCrossRefGoogle Scholar
  67. 67.
    Clare, J,J,, Rayment, F.B., Ballantine, S.P., Sreekrishna, K., and Romanos, M.A. (1991) High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Bio/Technology 9, 455–460.Google Scholar
  68. 68.
    Richardson, P.T., Roberts, L.M., Gould, J.H., and Lord, J.M. (1988) The expression of functional ricin B-chain in Saccharomyces cerevisiae. Biochim. Biophys. Acta 950, 385–394.PubMedCrossRefGoogle Scholar
  69. 69.
    Binder, M., Schanz, M., and Hartig, A. (1991) Vector-mediated overexpression of catalase A in the yeast Saccharomyces cerevisiae induces inclusion body formation. Eur. J. Cell Biol. 54, 305–312.PubMedGoogle Scholar
  70. 70.
    Choi, S.Y., Lee, S.Y., and Bock, R.M. (1993) High level expression in Saccharomyces cerevisiae of an artificial gene encoding a repeated tripeptide aspartyl-phenylyalanyl-lysine. J. Biotechnol. 30, 211–223.PubMedCrossRefGoogle Scholar
  71. 71.
    Weik, R., Francky, A., Striedner, G., Raspor, P., Bayer, K., and Mattanovich, D. (1998) Recombinant expression of alliin lyase from garlic (Allium sativum) in bacteria and yeasts. Planta Med. 64, 387–388.PubMedCrossRefGoogle Scholar
  72. 72.
    Idiris, A., Tohda, H., Kumagai, H., and Takegawa, K. (2010) Engineering of protein secretion in yeast: strategies and impact on protein production. Appl. Microbiol. Biotechnol. 86, 403–417.PubMedCrossRefGoogle Scholar
  73. 73.
    Barr, K.A., Hopkins, S.A., and Sreekrishna, K. (1992) Protocol for efficient secretion of HSA developed from Pichia pastoris. Pharm. Eng. 12, 48–51.Google Scholar
  74. 74.
    Kauffman, K.J., Pridgen, E.M., Doyle, F.J. 3rd, Dhurjati, P.S., and Robinson, A.S. (2002) Decreased protein expression and intermittent recoveries in BiP levels result from cellular stress during heterologous protein expression in Saccharomyces cerevisiae. Biotechnol. Prog. 18, 942–950.PubMedCrossRefGoogle Scholar
  75. 75.
    Hohenblum, H., Borth, N., and Mattanovich, D. (2003) Assessing viability and cell-associated product of recombinant protein producing Pichia pastoris with flow cytometry. J. Biotechnol. 102, 281–290.PubMedCrossRefGoogle Scholar
  76. 76.
    Hohenblum, H., Gasser, B., Maurer, M., Borth, N., and Mattanovich, D. (2004) Effects of gene dosage, promoters, and substrates on unfolded protein stress of recombinant Pichia pastoris. Biotechnol Bioeng. 85, 367–375.PubMedCrossRefGoogle Scholar
  77. 77.
    Kohno, K. (2010) Stress-sensing mechanisms in the unfolded protein response: similarities and differences between yeast and mammals. J. Biochem. 147, 27–33.PubMedCrossRefGoogle Scholar
  78. 78.
    Mori, K. (2009) Signalling pathways in the unfolded protein response: development from yeast to mammals. J. Biochem. 146, 743–750.PubMedCrossRefGoogle Scholar
  79. 79.
    Gasser, B., Saloheimo, M., Rinas, U., et al. (2008) Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microb. Cell. Fact. 7, 11.PubMedCrossRefGoogle Scholar
  80. 80.
    Valkonen, M., Penttila, M., and Saloheimo, M. (2003) Effects of inactivation and constitutive expression of the unfolded- protein response pathway on protein production in the yeast Saccharomyces cerevisiae. Appl. Environ. Microbiol. 69, 2065–2072.PubMedCrossRefGoogle Scholar
  81. 81.
    Gasser, B., Maurer, M., Gach, J., Kunert, R., and Mattanovich, D. (2006) Engineering of Pichia pastoris for improved production of antibody fragments. Biotechnol. Bioeng. 94, 353–361.PubMedCrossRefGoogle Scholar
  82. 82.
    Pakula, T.M., Laxell, M., Huuskonen, A., Uusitalo, J., Saloheimo, M., and Penttila, M. (2003) The effects of drugs inhibiting protein secretion in the filamentous fungus Trichoderma reesei. Evidence for down-regulation of genes that encode secreted proteins in the stressed cells. J. Biol. Chem. 278, 45011–45020.Google Scholar
  83. 83.
    Swaim, C., Anton, B., Sharma, S., Taron, C., and Benner, J. (2008) Physical and computational analysis of the yeast Kluyveromyces lactis secreted proteome. Proteomics 8, 2714–2723.PubMedCrossRefGoogle Scholar
  84. 84.
    Vai, M., Brambilla, L., Orlandi, I., Rota, N., Ranzi, B.M., Alberghina, L., and Porro, D. (2000) Improved secretion of native human insulin-like growth factor 1 from gas1 mutant Saccharomyces cerevisiae cells. Appl. Environ. Microbiol. 66, 5477–5479.PubMedCrossRefGoogle Scholar
  85. 85.
    Marx, H., Sauer, M., Resina, D., et al. (2006) Cloning, disruption and protein secretory phenotype of the GAS1 homologue of Pichia pastoris. FEMS Microbiol. Lett. 264, 40–47.PubMedCrossRefGoogle Scholar
  86. 86.
    Passolunghi, S., Riboldi, L., Dato, L., Porro, D., and Branduardi, P. (2010) Cloning of the Zygosaccharomyces bailii GAS1 homologue and effect of cell wall engineering on protein secretory phenotype. Microb. Cell. Fact. 9, 7.PubMedCrossRefGoogle Scholar
  87. 87.
    Resina, D., Maurer, M., Cos, O., et al. (2009) Engineering of bottlenecks in Rhizopus oryzae lipase production in Pichia pastoris using the nitrogen source-regulated FLD1 promoter. N. Biotechnol. 25, 396–403.PubMedCrossRefGoogle Scholar
  88. 88.
    Gemmill, T.R., and Trimble, R.B. (1999) Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim. Biophys. Acta. 1426, 227–237.PubMedCrossRefGoogle Scholar
  89. 89.
    Gellissen, G. (2000) Heterologous protein production in methylotrophic yeasts. Appl. Microbiol. Biotechnol. 54, 741–750.PubMedCrossRefGoogle Scholar
  90. 90.
    Nakayama, K., Nagasu, T., Shimma, Y., Kuromitsu, J., and Jigami, Y. (1992) OCH1 encodes a novel membrane bound mannosyltransferase: outer chain elongation of asparagine-linked oligosaccharides. EMBO J. 11, 2511–2519.PubMedGoogle Scholar
  91. 91.
    Zhou, J., Zhang, H., Liu, X., Wang, P.G., and Qi, Q. (2007) Influence of N-glycosylation on Saccharomyces cerevisiae morphology: a golgi glycosylation mutant shows cell division defects. Curr. Microbiol. 55, 198–204.PubMedCrossRefGoogle Scholar
  92. 92.
    Jacobs, P.P., Geysens, S., Vervecken, W., Contreras, R., and Callewaert, N. (2009) Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology. Nat. Protoc. 4, 58–70.PubMedCrossRefGoogle Scholar
  93. 93.
    Wildt, S., and Gerngross, T.U. (2005) The humanization of N-glycosylation pathways in yeast. Nat. Rev. Microbiol. 3, 119–128.PubMedCrossRefGoogle Scholar
  94. 94.
    Chiba, Y., and Akeboshi, H. (2009) Glycan engineering and production of ‘humanized’ glycoprotein in yeast cells. Biol. Pharm. Bull. 32, 786–795.PubMedCrossRefGoogle Scholar
  95. 95.
    De Pourcq, K., De Schutter, K., and Callewaert, N. (2010) Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl. Microbiol. Biotechnol. 87, 1617–1631.PubMedCrossRefGoogle Scholar
  96. 96.
    Potgieter, T.I., Cukan, M., Drummond, J.E., et al. (2009) Production of monoclonal antibodies by glycoengineered Pichia pastoris. J. Biotechnol. 139, 318–325.PubMedCrossRefGoogle Scholar
  97. 97.
    Goto, M. (2007) Protein O-glycosylation in fungi: diverse structures and multiple functions. Biosci. Biotechnol. Biochem. 71, 1415–1427.PubMedCrossRefGoogle Scholar
  98. 98.
    Chigira, Y., Oka, T., Okajima, T., and Jigami, Y. (2008) Engineering of a mammalian O-glycosylation pathway in the yeast Saccha-romyces cerevisiae: production of O-fucosylated epidermal growth factor domains. Glycobiology 18, 303–314.PubMedCrossRefGoogle Scholar
  99. 99.
    Sumi, A., Okuyama, K., Kobayashi, K., Ohtani, W., Ohmura, T., and Yokoyama, K. (1999) Purification of recombinant human serum albumin. Efficient purification using STREAMLINE. Bioseparation 8, 195–200.Google Scholar
  100. 100.
    Westerhoff, H., and Palsson, B. (2004) The evolution of molecular biology into systems biology. Nat. Biotechnol. 22, 1249–1252.PubMedCrossRefGoogle Scholar
  101. 101.
    Olivares-Hernandez, R., Usaite, R., and Nielsen, J. (2010) Integrative analysis using proteome and transcriptome data from yeast to unravel regulatory patterns at post-transcriptional level. Biotechnol. Bioeng. doi: 10.1002/bit.22868.Google Scholar
  102. 102.
    Zhang, J., Vemuri, G., and Nielsen, J. (2010) Systems biology of energy homeostasis in yeast. Curr. Opin. Microbiol. 13, 382–388.PubMedCrossRefGoogle Scholar
  103. 103.
    Han, M., Lee, J., Lee, S., and Yoo, J. (2008) Proteome-level responses of Escherichia coli to long-chain fatty acids and use of fatty acid inducible promoter in protein production. J. Biomed. Biotechnol. 2008, 735101.PubMedCrossRefGoogle Scholar
  104. 104.
    Fürch, T., Wittmann, C., Wang, W., Franco-Lara, E., Jahn, D., and Deckwer, W. (2007) Effect of different carbon sources on central metabolic fluxes and the recombinant production of a hydrolase from Thermobifida fusca in Bacillus megaterium. J. Biotechnol. 132, 385–394.PubMedCrossRefGoogle Scholar
  105. 105.
    Wang, Y., Xue, W., Sims, A.H., et al. (2008) Isolation of four pepsin-like protease genes from Aspergillus niger and analysis of the effect of disruptions on heterologous laccase expression. Fungal. Genet. Biol. 45, 17–27.PubMedCrossRefGoogle Scholar
  106. 106.
    Kimura, S., Maruyama, J., Takeuchi, M., and Kitamoto, K. (2008) Monitoring global gene expression of proteases and improvement of human lysozyme production in the nptB gene disruptant of Aspergillus oryzae. Biosci Biotechnol Biochem 72, 499–505.PubMedCrossRefGoogle Scholar
  107. 107.
    Wong, D., Wong, K., Nissom, P., Heng, C., and Yap, M. (2006) Targeting early apoptotic genes in batch and fed-batch CHO cell cultures. Biotechnol. Bioeng. 95, 350–361.PubMedCrossRefGoogle Scholar
  108. 108.
    Pizarro, F., Vargas, F., and Agosin, E. (2007) A systems biology perspective of wine fermentations. Yeast 24, 977–991.PubMedCrossRefGoogle Scholar
  109. 109.
    Takors, R., Bathe, B., Rieping, M., Hans, S., Kelle, R., and Huthmacher, K. (2007) Systems biology for industrial strains and fermentation processes--example: amino acids. J. Biotechnol. 129, 181–190.PubMedCrossRefGoogle Scholar
  110. 110.
    Mukhopadhyay, A., Redding, A., Rutherford, B., and Keasling, J. (2008) Importance of systems biology in engineering microbes for biofuel production. Curr. Opin. Biotechnol. 19, 228–234.PubMedCrossRefGoogle Scholar
  111. 111.
    Graf, A., Dragosits, M., Gasser, B., and Mattanovich, D. (2009) Yeast systems biotechnology for the production of heterologous proteins. FEMS Yeast Res. 9, 335–348.PubMedCrossRefGoogle Scholar
  112. 112.
    Sauer, M., Branduardi, P., Gasser, B., Valli, M., Maurer, M., Porro, D., and Mattanovich, D. (2004) Differential gene expression in recombinant Pichia pastoris analysed by heterologous DNA microarray hybridisation. Microb. Cell. Fact. 3, 17.PubMedCrossRefGoogle Scholar
  113. 113.
    Gasser, B., Maurer, M., Rautio, J., et al. (2007) Monitoring of transcriptional regulation in Pichia pastoris under protein production conditions. BMC Genomics 8, 179.PubMedCrossRefGoogle Scholar
  114. 114.
    Dragosits, M., Stadlmann, J., Albiol, J., et al. (2009) The effect of temperature on the proteome of recombinant Pichia pastoris. J. Proteome Res. 8, 1380–1392.PubMedCrossRefGoogle Scholar
  115. 115.
    Dragosits, M., Stadlmann, J., Graf, A., et al. (2010) The response to unfolded protein is involved in osmotolerance of Pichia pastoris. BMC Genomics 11, 207.PubMedCrossRefGoogle Scholar
  116. 116.
    Gonzalez, R., Andrews, B., Molitor, J., and Asenjo, J. (2003) Metabolic analysis of the synthesis of high levels of intracellular human SOD in Saccharomyces cerevisiae rhSOD 2060 411 SGA122. Biotechnol. Bioeng. 82, 152–169.PubMedCrossRefGoogle Scholar
  117. 117.
    Heyland, J., Fu, J., Blank, L.M., and Schmid, A. (2010) Quantitative physiology of Pichia pastoris during glucose-limited high-cell density fed-batch cultivation for recombinant protein production. Biotechnol. Bioeng. 107, 357–368.PubMedCrossRefGoogle Scholar
  118. 118.
    Gasser, B., Sauer, M., Maurer, M., Stadlmayr, G. and Mattanovich, D. (2007) Transcriptomics-based identification of novel factors enhancing heterologous protein secretion in yeasts. Appl. Environ. Microbiol. 73: 6499–6507.PubMedCrossRefGoogle Scholar
  119. 119.
    Dragosits, M., Frascotti, G., Bernard-Granger, L., et al (2010) Influence of growth temperature on the production of antibody Fab fragments in different microbes: a host comparative analysis, Biotechnology Progress, accepted for publication.Google Scholar
  120. 120.
    Mattanovich, D., Gasser, B., Hohenblum, H., and Sauer, M. (2004) Stress in recombinant protein producing yeasts. J. Biotechnol. 113, 121–135.PubMedCrossRefGoogle Scholar
  121. 121.
    van Zutphen, T., Baerends, R.J., Susanna, K.A., de Jong, A., Kuipers, O.P., Veenhuis, M., and van der Klei, I.J. (2010) Adaptation of Hansenula polymorpha to methanol: a transcriptome analysis. BMC Genomics 11, 1.PubMedCrossRefGoogle Scholar
  122. 122.
    Solà, A., Maaheimo, H., Ylönen, K., Ferrer, P. and Szyperski, T. (2004) Amino acid biosynthesis and metabolic flux profiling of Pichia pastoris. Eur. J. Biochem. 271, 2462–2470.PubMedCrossRefGoogle Scholar
  123. 123.
    Solà, A., Jouhten, P., Maaheimo, H., Sánchez-Ferrando, F., Szyperski, T. and Ferrer, P. (2007) Metabolic flux profiling of Pichia pastoris grown on glycerol/methanol mixtures in chemostat cultures at low and high dilution rates. Microbiology 153, 281–290.PubMedCrossRefGoogle Scholar
  124. 124.
    Rautio, J.J., Kataja, K., Satokari, R., Penttila, M., Soderlund, H., and Saloheimo, M. (2006) Rapid and multiplexed transcript analysis of microbial cultures using capillary electophoresis-detectable oligonucleotide probe pools. J. Microbiol. Methods. 65, 404–416.PubMedCrossRefGoogle Scholar
  125. 125.
    Weik, R., Striedner, G., Francky, A., Raspor, P., Bayer, K., and Mattanovich, D. (1999) Induction of oxidofermentative ethanol formation in recombinant cells of Saccharomyces cerevisiae yeasts. Food Technol. Biotechnol. 37, 191–194.Google Scholar
  126. 126.
    Hong, F., Meinander, N.Q. and Jonsson, L.J. (2002) Fermentation strategies for improved heterologous expression of laccase in Pichia pastoris. Biotechnol. Bioeng. 79, 438–449.PubMedCrossRefGoogle Scholar
  127. 127.
    Zhang, W., Smith, L.A., Plantz, B.A., Schlegel, V.L., and Meagher, M.M. (2002) Design of methanol feed control in Pichia pastoris fermentations based upon a growth model. Biotechnol Prog. 18, 1392–1399.PubMedCrossRefGoogle Scholar
  128. 128.
    Jahic, M., Veide, A., Charoenrat,T., Teeri, T., and Enfors, S.O. (2006) Process technology for production and recovery of heterologous proteins with Pichia pastoris. Biotechnol. Prog. 22, 1465–1473.PubMedGoogle Scholar
  129. 129.
    Kim, S.J., Lee, J.A., Kim, Y.H., and Song, B.K. (2009) Optimization of the functional expression of Coprinus cinereus peroxidase in Pichia pastoris by varying the host and promoter. J. Microbiol. Biotechnol. 19, 966–971.PubMedCrossRefGoogle Scholar
  130. 130.
    Pla, I.A., Damasceno, L.M., Vannelli, T., Ritter, G., Batt, C.A., and Shuler, M.L. (2006) Evaluation of Mut+ and MutS Pichia pastoris phenotypes for high level extracellular scFv expression under feedback control of the methanol concentration. Biotechnol. Prog. 22, 881–888.PubMedCrossRefGoogle Scholar
  131. 131.
    d’Anjou, M.C., and Daugulis, A.J. (2001) A rational approach to improving productivity in recombinant Pichia pastoris fermentation. Biotechnol. Bioeng. 72, 1–11.Google Scholar
  132. 132.
    Jungo, C., Marison, I., and von Stockar, U. (2007) Mixed feeds of glycerol and methanol can improve the performance of Pichia pastoris cultures: A quantitative study based on concentration gradients in transient continuous cultures. J. Biotechnol. 128, 824–837.PubMedCrossRefGoogle Scholar
  133. 133.
    Kobayashi, K., Kuwae, S., Ohya, T., Ohda, T., Ohyama, M., and Tomomitsu, K. (2000) High level secretion of recombinant human serum albumin by fed-batch fermentation of the methylotrophic yeast, Pichia pastoris, based on optimal methanol feeding strategy. J. Biosci. Bioeng. 90, 280–288.PubMedGoogle Scholar
  134. 134.
    Curvers, S., Brixius, P., Klauser, T., Thommes, J., Weuster-Botz, D., Takors, R., and Wandrey, C. (2001) Human chymotrypsinogen B production with Pichia pastoris by integrated development of fermentation and downstream processing. Part 1. Fermentation. Biotechnol Prog 17, 495–502.PubMedCrossRefGoogle Scholar
  135. 135.
    Maurer, M., Kuhleitner, M., Gasser, B., and Mattanovich, D. (2006) Versatile modeling and optimization of fed batch processes for the production of secreted heterologous proteins with Pichia pastoris. Microb. Cell Fact. 5, 37.PubMedCrossRefGoogle Scholar
  136. 136.
    Potgieter, T.I., Kersey, S.D., Mallem, M.R., Nylen, A.C., and d’Anjou, M. (2010) Antibody expression kinetics in glycoengineered Pichia pastoris. Biotechnol. Bioeng. 106, 918–927.Google Scholar
  137. 137.
    Goodey, A.R. (1993) The production of heterologous plasma proteins. Trends Biotechnol. 11, 430–433.PubMedCrossRefGoogle Scholar
  138. 138.
    Porro, D., Martegani, E., Ranzi, B.M., and Alberghina, L. (1991) Heterologous gene expression in continuous cultures of budding yeast. Appl. Microbiol. Biotechnol. 34, 632–636.PubMedCrossRefGoogle Scholar
  139. 139.
    Stephanopoulos, G., Aristodou, A., and Nielsen, J. (1998) Metabolic engineering. Academic Press, Inc., San Diego, Calif.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Diethard Mattanovich
    • 1
  • Paola Branduardi
    • 2
  • Laura Dato
    • 2
  • Brigitte Gasser
    • 1
  • Michael Sauer
    • 1
  • Danilo Porro
    • 2
    Email author
  1. 1.Department of BiotechnologyUniversity of Natural Resources and Life Sciences, and Austrian Centre of Industrial BiotechnologyViennaAustria
  2. 2.Department of Biotechnology and BioscienceUniversity of Milano-BicoccaMilanItaly

Personalised recommendations