Plasmid DNA Production for Therapeutic Applications

  • Alvaro R. Lara
  • Octavio T. Ramírez
Part of the Methods in Molecular Biology book series (MIMB, volume 824)


Plasmid DNA (pDNA) is the base for promising DNA vaccines and gene therapies against many infectious, acquired, and genetic diseases, including HIV-AIDS, Ebola, Malaria, and different types of cancer, enteric pathogens, and influenza. Compared to conventional vaccines, DNA vaccines have many advantages such as high stability, not being infectious, focusing the immune response to only those antigens desired for immunization and long-term persistence of the vaccine protection. Especially in developing countries, where conventional effective vaccines are often unavailable or too expensive, there is a need for both new and improved vaccines. Therefore the demand of pDNA is expected to rise significantly in the near future. Since the injection of pDNA usually only leads to a weak immune response, several milligrams of DNA vaccine are necessary for immunization protection. Hence, there is a special interest to raise the product yield in order to reduce manufacturing costs. In this chapter, the different stages of plasmid DNA production are reviewed, from the vector design to downstream operation options. In particular, recent advances on cell engineering for improving plasmid DNA production are discussed.

Key words

DNA vaccines Plasmid DNA pDNA Cell engineering Minicircles 



This work was supported by CONACyT grants 84447 and 101847, PROMEP 47410089, and PAPIIT-UNAM IN-223210.


  1. 1.
    Palomares, L. A., Estrada-Mondaca, S., Ramírez, O. T. (2004). Production of recombinant proteins: Challenges and solutions. Methods Molec. Biol. 267, 15–52.Google Scholar
  2. 2.
    Rossenberg, S.A., Aebersold, P., Cornetta, K., et al. (1990) Gene transfer into humans- immunotherapy of patients with advanced melanoma, suing tumor-infiltrating lymphocites modified by retroviral gene transduction. N. Engl. J. Med. 323, 570–578.CrossRefGoogle Scholar
  3. 3.
    Journal of Gene Medicine web presence 2010. Gene Therapy Clinical Trials Worldwide.
  4. 4.
    Nichols, W. W., Ledwith, B. J., Manam, S. V., et al., (1995) Potential DNA vaccine integration into host cell genome. Ann. NY Acad. Sci. 772, 30–39.PubMedCrossRefGoogle Scholar
  5. 5.
    Raper, S. E., Chirmule, N., Lee, F. S., et al., (2003) Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol. Genet. Metabol. 80, 148–158.CrossRefGoogle Scholar
  6. 6.
    Locher, C., Putnam, D., Langer, R., et al., (2003) Enhancement of a human immunodeficiency virus env DNA vaccine using a novel polycationic nanoparticle formulation. Immunol. Lett. 90, 67–70.PubMedCrossRefGoogle Scholar
  7. 7.
    Wang, S., Liu, X., Fisher, K., et al., (2000) Enhanced type I immune response to a hepatitis B DNA vaccine by formulation with calcium- or aluminium phosphate. Vaccine 18, 1227–1235.PubMedCrossRefGoogle Scholar
  8. 8.
    Aguiar, J., Hedstrom, R., Rogers, W., et al., (2001) Enhancement of the immune response in rabbits to a malaria DNA vaccine by immunization with a needle-free jet device. Vaccine 20, 275–280.PubMedCrossRefGoogle Scholar
  9. 9.
    Babiuk, S., Baca-Estrada, M., Foldvari, M., et al., (2004) Increased gene expression and inflammatory cell infiltration caused by electroporation are both important for improving the efficacy of DNA vaccines. J. Biotechnol. 110, 1–10.PubMedCrossRefGoogle Scholar
  10. 10.
    Bachy, M., Boudet, F., Bureau, M., et al., (2001) Electric pulses increase the immunogenicity of an influenza DNA vaccine injected intramuscularly in the mouse. Vaccine 19, 1688–1693.PubMedCrossRefGoogle Scholar
  11. 11.
    FDA (2007) Guidance for industry: Considerations for plasmid DNA vaccines for infectious disease indications. US Department of Health and Human Services, Food and Drug Administration.Google Scholar
  12. 12.
    Han, Y., Liu, S., Ho, J., et al., (2009) Using DNA as a drug—Bioprocessing and delivery strategies. Chem. Eng. Res. Des. 87, 343–348.CrossRefGoogle Scholar
  13. 13.
    Williams, J. A., Carnes, A. E., Hodgson, C. P. (2009) Plasmid DNA vaccine vector design: Impact on efficacy, safety and upstream production. Biotechnol. Adv. 27, 353–370.PubMedCrossRefGoogle Scholar
  14. 14.
    Summers, D. K. (1996) The biology of plasmids. Blackwell Science, Oxford, UK.CrossRefGoogle Scholar
  15. 15.
    Bower, D.M., Prather, K.L.J. (2009) Engineering of bacterial strains and vectors for the production of plasmid DNA. Appl. Microbio. Biotechnol. 82, 805–813.CrossRefGoogle Scholar
  16. 16.
    Schumann, W. (2001) The biology of plasmids, in Plasmids for therapy and vaccination (Schleef, M., Ed.), pp. 1–28 Wiley –VCH Verlag GmbH, Weinheim.Google Scholar
  17. 17.
    Cesareni, G., Muesing, M. A., Polisky, B. (1982) Control of ColE1 DNA replication: the rop gene product negatively affects transcription from the replication primer promoter. Proc. Natl. Acad. Sci. U.S.A. 79, 6313–6317.PubMedCrossRefGoogle Scholar
  18. 18.
    Lin-Chao, S., Chen, W., and Wong, T. (1992) High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNAII. Molec. Microbiol. 6, 3385–3393.CrossRefGoogle Scholar
  19. 19.
    Yanisch-Perron, C., Vieira, J., Messing, J. (1995) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33, 103–119.CrossRefGoogle Scholar
  20. 20.
    Manthorpe, M., Hobart, P., Hermanson, G., et al., (2005) Plasmid Vaccines and Therapeutics: From Design to Applications. Adv. Biochem. Eng. Biotechnol. 99, 41–92.PubMedGoogle Scholar
  21. 21.
    Soubrier, F., Cameron, B., Manse, B., et al. (1999) pCOR: A new design of plasmid vectors for nonviral gene therapy. Gene Ther. 6, 1482–1488.PubMedCrossRefGoogle Scholar
  22. 22.
    Butler, V. A. (1996) Points to consider on plasmid DNA vaccines for preventive infectious disease indications. Center for Biologics Evaluation and Research, Food and Drug Administration. Docket 96 N-0400.Google Scholar
  23. 23.
    Valenzuela, M. S., Siddiqui, K. A., Sarkar, B. L. (1996) High expression of plasmid-encoded tetracycline resistance gene in E. coli causes a decrease in membrane-bound ATPase activity. Plasmid 36, 19–25.PubMedCrossRefGoogle Scholar
  24. 24.
    Gill, D. R., Smyth, S. E., Goddard, C. A., et al., (2001) Increased persistence of lung gene expression using plasmids containing the ubiquitin C or elongation factor 1α promoter. Gene Ther. 8, 1539–1546.PubMedCrossRefGoogle Scholar
  25. 25.
    Müller, P. P., Oumard, A., Wirth, D., et al., (2001) Polyvalent vector for coexpression of multiple genes, in Plasmids for therapy and vaccination (Schleef, M., Ed.), pp. 119–137, Wiley –VCH Verlag GmbH, Weinheim.Google Scholar
  26. 26.
    Azzoni, A. R., Ribeiro, S. C., Monteiro G. A., et al., (2007) The impact of polyadenylation signals on plasmid nuclease-resistance and transgene expression. J. Gene Med. 9, 392–402.PubMedCrossRefGoogle Scholar
  27. 27.
    Carvalho, J. A., Azzoni, A. R., Prazeres, D. M., et al., (2010). Comparative analysis of antigen-targeting sequences used in DNA vaccines. Molec. Biotechnol. 44, 204–212.CrossRefGoogle Scholar
  28. 28.
    Ow. D. S. W., Lee, D. Y., Tung, H. H., Chao, S. L. (2009) Plasmid regulation at systems level effects on Escherichia coli metabolism, in Systems Biology and Biotechnology of Escherichia coli, (Lee, S. Y., Ed), pp. 239–294. Springer Science, Heidelberg.Google Scholar
  29. 29.
    Lee, C. H., Mizusawa, H., Kakefuda, T. (1981) Unwinding of double-stranded DNA helix by dehydration. Proc. Natl. Acad. Sci. U.S.A. 78, 2838–2842.PubMedCrossRefGoogle Scholar
  30. 30.
    Dayn, A., Malkhosyan, S., Duzhy, D., et al., (1991). Formation of (dA-dT)n cruciforms in Escherichia coli cells under different environmental conditions. J. Bact. 173, 2658–2664.PubMedGoogle Scholar
  31. 31.
    Rothenburg, S., Koch-Nolte, F., Haag, F. (2001) DNA methylation and Z-DNA formation as mediators of quantitative differences in the expression of alleles. Immunol. Rev. 184, 286–298.PubMedCrossRefGoogle Scholar
  32. 32.
    Ghosh, A., Bansal, M. (2003) A glossary of DNA structures from A to Z. Acta Crystallogr. D Biol. Crystallogr. 59, 620–626.PubMedCrossRefGoogle Scholar
  33. 33.
    Higgins, N. P., Vologodskii, A. (2004). Topo­logical behavior of plasmid DNA, in Plasmids Biology (Funnel, B. E., Philips, G., Eds), pp. 181–201. ASM Press, Washington, DC.Google Scholar
  34. 34.
    Schmidt, T., Friehs, K., Flaschel, E. (2001) Structures of plasmid DNA, in Plasmids for therapy and vaccination (Schleef, M., Ed.), pp. 119–137, Wiley –VCH Verlag GmbH, Weinheim.Google Scholar
  35. 35.
    Reece, R. J., Maxwell, A. (1991) DNA gyrase: Structure and function. Crit. Rev. Biochem. Mol. Biol. 26, 335–75.PubMedCrossRefGoogle Scholar
  36. 36.
    Bauer, W. R., Crick, F. H. C., White, J. H. (1980) Supercoiled DNA. Sci Am. 243, 100–113.Google Scholar
  37. 37.
    Cupillard, L., Juillard, V., Latour, S., et al.,(2005). Impact of plasmid supercoiling on the efficacy of a rabies DNA vaccine to protect cats. Vaccine 23, 1910–1916.PubMedCrossRefGoogle Scholar
  38. 38.
    Pillai, V. B., Hellerstein, M., Yu, T., et al.,(2008). Comparative studies on in vitro expression and in vivo immunogenicity of supercoiled and open circular forms of plasmid DNA vaccines. Vaccine 26, 1136–1141.PubMedCrossRefGoogle Scholar
  39. 39.
    Leahy, P., Carmichael, G. G., Rossomando, E. F. (1997) Transcription from plasmid expression vectors is increased up to 14-fold when plasmids are transfected as concatemers. Nucl. Acids Res. 25, 449–450.PubMedCrossRefGoogle Scholar
  40. 40.
    Haugland, R. P. (1996) Handbook of fluorescence probes and research chemicals. Leiden, The Netherlands: Molecular Probes, Inc.Google Scholar
  41. 41.
    Singer, V. L., Jones, L. J., Yue, S.T., et al., (1997). Characterization of Picogreen reagent and development of a fluorescence-based solution assay for double stranded DNA quantitation. Anal. Biochem. 249, 228–238.PubMedCrossRefGoogle Scholar
  42. 42.
    Noites, I. S., O’Kennedy, R. D., Levy, M. S., et al., (1999) Rapid quantitation and monitoring of plasmid DNA using an ultrasensitive DNA-binding dye. Biotechnol. Bioeng. 66, 195–201.PubMedCrossRefGoogle Scholar
  43. 43.
    Rock, C., Shamlou P. A., Levy, M. S. (2003) An automated microplate-based method for monitoring DNA strand breaks in plasmids and bacterial artificial chromosomes. Nucl. Acids Res. 31, e65.PubMedCrossRefGoogle Scholar
  44. 44.
    Levy, M. S., Loftian, P., O’Kennedy, R., et al., (2000) Quantitation of supercoiled circular content in plasmid DNA solutions using a fluorescence-based method. Nucl. Acids Res. 28, e57.PubMedCrossRefGoogle Scholar
  45. 45.
    Tanaka, H., Mielke, S. P., Benham, C, J., et al., (2008) Visualization of the detailed structure of plasmid DNA. J. Phys. Chem. B. 112, 16788–16792.Google Scholar
  46. 46.
    Schmidt, T., Friehs, K., Flaschel, E. (1999) Quantitative analysis of plasmid forms by agarose and capillary gel electrophoresis. Anal. Biochem. 274, 235–240.PubMedCrossRefGoogle Scholar
  47. 47.
    Keller, W. (1975) Determination of the number of superhelical turns in simian virus 40 DNA by gel electrophoresis. Proc. Natl. Acad. Sci. U.S.A. 72, 4876–4880.PubMedCrossRefGoogle Scholar
  48. 48.
    Kang, D. S., Wells, R. D. (1985) B-Z DNA junctions containing few, if any, nonpaired bases at physiological superhelical densities. J. Biol. Chem. 260, 7783–7790.PubMedGoogle Scholar
  49. 49.
    Vetcher, A. A., McEwen, A. E., Abujarour, R., et al., (2010). Gel mobilities of linking-number topoisomers and their dependence on DNA helical repeat and elasticity. Biophys. Chem. 148, 104–111.PubMedCrossRefGoogle Scholar
  50. 50.
    Ferreira, G. N. M., Cabral, J. M. S., Prazeres, D. F. M. (1999) Monitoring of process streams in the large-scale purification of plasmid DNA for gene therapy applications. Pharm. Pharmacol. Commun. 5, 57–59.CrossRefGoogle Scholar
  51. 51.
    Kendall, D., Booth, A. J., Levy, M. S., et al., (2001) Separation of supercoiled and open-circular plasmid DNA by liquid-liquid counter-current chromatography. Biotechnol. Lett. 23, 613–619.CrossRefGoogle Scholar
  52. 52.
    Diogo M. M., Queiroz, J. A., Prazeres, D. M. F. (2005) Chromatography of plasmid DNA. J Chromatogr A. 1069, 3–22.PubMedCrossRefGoogle Scholar
  53. 53.
    Weigl, D., Molloy, M. J., Clayton, T. M., et al., (2006) Characterization of a topologically aberrant plasmid population from pilot-scale production of clinical-grade DNA. J. Biotechnol. 121, 1–12.PubMedCrossRefGoogle Scholar
  54. 54.
    Smith, C. R., DePrince, R. B., Dackor, J., et al., (2007) Separation of topological forms of plasmid DNA by anion-exchange HPLC: shifts in elution order of linear DNA. J. Chromatogr. B. 854, 121–127.CrossRefGoogle Scholar
  55. 55.
    Middaugh C, R., Evans, R. K., Montgomery, D. L., et al., (1998) Analysis of Plasmid DNA from a Pharmaceutical Perspective. J. Pharm. Sci. 87, 130–146.Google Scholar
  56. 56.
    Latulippe, D. R., Zydney, A. L. (2010) Radius of gyration of plasmid DNA isoforms from static light scattering. Biotechnol. Bioeng. 107, 134–412.PubMedCrossRefGoogle Scholar
  57. 57.
    Gao, X., Kim, K.S., Liu, D. (2007) Nonviral gene delivery: what we know and what is next. AAPS J. 9, E92–E104.PubMedCrossRefGoogle Scholar
  58. 58.
    Lamb, B. T., Sisodia, S. S., Lawler, A. M., et al., (1993) Introduction and expression of the 400 kilobase amyloid precursor protein gene in transgenic mice. Nat. Genet. 5, 22–30.PubMedCrossRefGoogle Scholar
  59. 59.
    Lufino, M. M., Edser, P. A., Wade-Martins, R. (2008) Advances in high-capacity extrachromosomal vector technology: episomal maintenance, vector delivery, and transgene expression. Molec. Ther. 16, 1525–1538.CrossRefGoogle Scholar
  60. 60.
    Robertson, J. S., Griffiths, E. (2006) Assuring the quality, safety, and efficacy of DNA vaccines. Methods Mol. Med. 127, 363–374.PubMedGoogle Scholar
  61. 61.
    Gill, D. R., Pringle, I. A., Hyde, S. C. (2009) Progress and Prospects: The design and production of plasmid vectors. Gene Ther. 16, 165–171.PubMedCrossRefGoogle Scholar
  62. 62.
    Valera, A., Perales, J. C., Hatzoglou, M., et al., (1994) Expression of the neomycin resistance (neo) gene induces alterations in gene expression and metabolism. Hum. Gene Ther. 5, 449–456.PubMedCrossRefGoogle Scholar
  63. 63.
    Rozkov, A., Avignone-Rossa, C., Ertl, P., et al., (2004) Characterization of the metabolic burden on Escherichia coli DH1 cells imposed by the presence of a plasmid containing a gene therapy sequence. Biotechnol. Bioeng. 88, 909–915.PubMedCrossRefGoogle Scholar
  64. 64.
    Ow, D. S. W., Nissom P. M., Philp R., et al., (2006) Global transcriptional analysis of metabolic burden due to plasmid maintenance in Escherichia coli DH5α during batch fermentation. Enzyme Microb. Technol. 39, 391–398.CrossRefGoogle Scholar
  65. 65.
    Wang, Z., Xiang, L., Shao, J., et al.,(2006) Effects of the presence of ColE1 plasmid DNA in Escherichia coli on the host cell metabolism. Microb. Cell Fact. 5, 34.PubMedCrossRefGoogle Scholar
  66. 66.
    Mairhofer, J., Cserjan-Puschmann, M., Striedner, G., et al., (2010) Marker-free plasmids for gene therapeutic applications—Lack of antibiotic resistance gene substantially improves the manufacturing process. J. Biotechnol. 146, 130–137.PubMedCrossRefGoogle Scholar
  67. 67.
    Cranenburgh, R.M., Hanak, J.A., Williams, S.G., et al., (2001) Escherichia coli strains that allow antibiotic-free plasmid selection and maintenance by repressor titration. Nucl. Acids Res. 29, E26.PubMedCrossRefGoogle Scholar
  68. 68.
    Cranenburgh, R. M., Lewis, K. S., Hanak J. A. (2004) Effect of plasmid copy number and lac operator sequence on antibiotic-free plasmid selection by operator-repressor titration in Escherichia coli. J. Mol. Microbiol. Biotechnol. 7, 197–203.PubMedCrossRefGoogle Scholar
  69. 69.
    Williams, S. G., R. M. Cranenburgh, A. M. Weiss, C. J. et al., (1998). Repressor titration: a novel system for selection and stable maintenance of recombinant plasmids. Nucl. Acids Res. 26, 2120–2124.Google Scholar
  70. 70.
    Hanke, T., McMichael, A.J. (2000) Design and construction of an experimental HIV-1 vaccine for a year-2000 clinical trial in Kenya. Nat. Med. 6, 951–955.PubMedCrossRefGoogle Scholar
  71. 71.
    Vidal, L., Pinsach, J., Striedner, G., et al., (2008) Development of an antibiotic-free plasmid selection system based on glycine auxotrophy for recombinant protein overproduction in Escherichia coli. J. Biotechnol. 134, 127–136.PubMedCrossRefGoogle Scholar
  72. 72.
    Hägg, P., de Pohl, J. W., Abdulkarim, F., et al., (2004) A host/plasmid system that is not dependent on antibiotics and antibiotic resistance genes for stable plasmid maintenance in Escherichia coli. J. Biotechnol. 111, 17–30.PubMedCrossRefGoogle Scholar
  73. 73.
    Morona, R., Yeadon, J., Considine, A., et al., (1991) Construction of plasmid vectors with a non-antibiotic selection system based on the Escherichia coli thyA gene: application to cholera vaccine development. Gene 107, 139–144.PubMedCrossRefGoogle Scholar
  74. 74.
    Marie, C., Vandermeulen, G., Quiviger, M., et al., (2010) pFARs, Plasmids free of antibiotic resistance markers, display high-level transgene expression in muscle, skin and tumour cells. J. Gene Med. 12, 323–332.PubMedCrossRefGoogle Scholar
  75. 75.
    Dong, W. R., Xiang, L. X., Shao, J. Z. (2010) Novel Antibiotic-Free Plasmid Selection System Based on Complementation of Host Auxotrophy in the NAD De Novo Synthesis Pathway.Appl. Environ. Microbiol. 76, 2295–2303.PubMedCrossRefGoogle Scholar
  76. 76.
    Soubrier, F., Laborderie, B., Cameron, B. (2005) Improvement of pCOR plasmid copy number for pharmaceutical applications. Appl. Microbiol. Biotechnol. 66, 683–688.PubMedCrossRefGoogle Scholar
  77. 77.
    Pfaffenzeller, I., Mairhofer, J., Striedner, G., Bayer, K., Grabherr, R. (2006) Using ColE1-derived RNA I for suppression of a bacterially encoded gene: implication for a novel plasmid addiction system. Biotechnol. J. 1, 675–681.PubMedCrossRefGoogle Scholar
  78. 78.
    Mairhofer, J., Pfaffenzeller, I., Merz, D., et al., (2008) A novel antibiotic free plasmid selection system: Advances in safe and efficient DNA therapy. Biotechnol. J. 3, 83–89.PubMedCrossRefGoogle Scholar
  79. 79.
    Luke, J., Carnes A. E., Hodgson, C. P., et al., (2010) Improved antibiotic-free DNA vaccine vectors utilizing a novel RNA based plasmid selection system. Vaccine 27, 6454–6459.CrossRefGoogle Scholar
  80. 80.
    Kreiss, P., Cameron, B., Rangara, R., et al., (1999) Plasmid DNA size does not affect the physicochemical properties of lipoplexes but modulates gene transfer efficiency. Nucl. Acids Res. 27, 3792–3798.PubMedCrossRefGoogle Scholar
  81. 81.
    Junhghaus, C., Schroff, M., Koening-Merediz, S. A., et al., (2001) Form follows function: the design of minimalistic immunogenically defined gene expression (MIDGE®) constructs, in Plasmids for therapy and vaccination (Schleef, M., Ed.), pp. 119–137, Wiley –VCH Verlag GmbH, Weinheim.Google Scholar
  82. 82.
    Moreno, S., López-Fuertes, L., Vila-Coro, A. J., et al., (2004) DNA immunization with minimalistic expression constructs. Vaccine 22, 1709–1716.PubMedCrossRefGoogle Scholar
  83. 83.
    López-Fuertes, L., Pérez-Jiménez, E., Vila-Coro, A.J., et al., (2002) DNA vaccination with linear minimalistic (MIDGE) vectors confers protection against Leishmania major infection in mice. Vaccine 21, 247–257.PubMedCrossRefGoogle Scholar
  84. 84.
    Köchling, J., Prada, J., Bahrami, M., et al., (2008) Anti-tumor effect of DNA-based vaccination and dSLIM immunomodulatory molecules in mice with Ph+ acute lymphoblastic leukaemia. Vaccine 26, 4669–4675.PubMedCrossRefGoogle Scholar
  85. 85.
    Schirmbeck, R., Konig-Merediz, S. A., Riedl, P., et al., (2001) Priming of immune responses to hepatitis B surface antigen with minimal DNA expression constructs modified with a nuclear localization signal peptide. J. Molec. Med. 79, 343–50.PubMedCrossRefGoogle Scholar
  86. 86.
    Darquet, A. M., Cameron, B., Wils, P., et al., (1997) A new DNA vehicle for nonviral gene delivery: supercoiled minicircle. Gene Ther. 4, 1341–1349.PubMedCrossRefGoogle Scholar
  87. 87.
    Darquet, A. M., Rangara, R., Kreiss, P., et al., (2009) Minicircle: an improved DNA molecule for in vitro and in vivo gene transfer. Gene Ther. 6, 209–218.CrossRefGoogle Scholar
  88. 88.
    Faurez, F., Dory, D., Le Moigne, V., et al., (2010) Biosafety of DNA vaccines: New generation of DNA vectors and current knowledge on the fate of plasmids after injection. Vaccine 28, 3888–3895.PubMedCrossRefGoogle Scholar
  89. 89.
    Bigger, B.W., Tolmachov, O., Collombet, J. M., et al., (2001) An araC-controlled bacterial cre expression system to produce DNA minicircle vectors for nuclear and mitochondrial gene therapy. J. Biol. Chem. 276, 23018–23027.Google Scholar
  90. 90.
    Vaysse, L., Gregory, L. G., Harbottle, R. P., et al., (2006) Nuclear-targeted minicircle to enhance gene transfer with non-viral vectors in vitro and in vivo. J. Gene Med. 8, 754–763.PubMedCrossRefGoogle Scholar
  91. 91.
    Zhang, X., Epperly, M. W., Kay, M. A., et al., (2008) Radioprotection in vitro and in vivo by minicircle plasmid carrying the human manganese superoxide dismutase transgene. Hum. Gene Ther. 19, 820–826.PubMedCrossRefGoogle Scholar
  92. 92.
    Prather, K. J., Edmonds, M. C., Herods, J. W. (2006) Identification and characterization of IS1 transposition in plasmid amplification mutants of E. coli clones producing DNA vaccines. Appl. Microbiol. Biotechnol. 73, 815–826.PubMedCrossRefGoogle Scholar
  93. 93.
    Oliveira, P. H., Prather, K. J., Prazeres, D.M.F., et al., (2009) Structural instability of plasmid biopharmaceuticals: challenges and implications. Trends Biotechnol. 27, 503–511.PubMedCrossRefGoogle Scholar
  94. 94.
    Schoenfeld, T., Mendez, J., Storts, D. R., et al., (1995) Effects of Bacterial Strains Carrying the endA1 Genotype on DNA Quality Isolated with Wizard™ Plasmid Purification Systems. Promega Notes 53, 12–19.Google Scholar
  95. 95.
    Phue, J. N., Lee, S. J., Trinh, L., et al., (2008) Modified Escherichia coli B (BL21), a superior producer of plasmid DNA compared with Escherichia coli K (DH5alpha). Biotechnol. Bioeng. 101, 831–836.PubMedCrossRefGoogle Scholar
  96. 96.
    Bell, C. E. (2005) Structure and mechanism of Escherichia coli RecA ATPase. Mol. Microbiol. 58, 358–366.PubMedCrossRefGoogle Scholar
  97. 97.
    Kuzminov, A. (1999) Recombinational Repair of DNA Damage in Escherichia coli and Bacteriophage l. Microbiol. Mol. Biol. Rev. 63, 751–813.PubMedGoogle Scholar
  98. 98.
    Voss, C., Schmidt, T., Schleef, M., et al., (2003) Production of supercoiled multimeric plasmid DNA for biopharmaceutical application. J. Biotechnol. 105, 205–213.PubMedCrossRefGoogle Scholar
  99. 99.
    Yau, S. Y., Keshavarz-Moore, E., Ward, J. (2008) Host strain influences on supercoiled plasmid DNA production in Escherichia coli: Implications for efficient design of large-scale processes. Biotechnol. Bioeng. 101, 529–544.PubMedCrossRefGoogle Scholar
  100. 100.
    Singer, A., Eiteman, M. A., Altman E. (2009) DNA plasmid production in different host strains of Escherichia coli. J. Ind. Microbiol. Biotechnol. 36, 521–530.PubMedCrossRefGoogle Scholar
  101. 101.
    Reinikainen, P., Virkajärvi, I. (1989) Escherichia coli growth and plasmid copy numbers in continuous cultures. Biotechnol. Lett. 11, 225–230.CrossRefGoogle Scholar
  102. 102.
    Zabriskie, D.W., Arcuri, E.J. (1986) Factors influencing productivity of fermentations employing recombinant microorganisms. Enzyme Microb. Technol. 8, 706–717.CrossRefGoogle Scholar
  103. 103.
    Seo, J., Bailey, J. E. (1986) Continuous cultivation of recombinant Escherichia coli: existence of an optimum dilution rate for maximum plasmid and gene product concentration. Biotechnol. Bioeng. 28, 1590–1594.PubMedCrossRefGoogle Scholar
  104. 104.
    Seo, J., Bailey, J.E. (1985) Effects of recombinant plasmid content on growth properties and cloned gene product formation in Escherichia coli. Biotechnol. Bioeng. 27, 1668–1674.PubMedCrossRefGoogle Scholar
  105. 105.
    Reinikainen, P., Korpela, K., Nissinen, V., et al., (1989) Escherichia coli plasmid production in a fermenter. Biotechnol. Bioeng. 33, 386–393.PubMedCrossRefGoogle Scholar
  106. 106.
    Chen, W., Graham, C., Ciccarelli, R. B. (1997) Automated fed-batch fermentation with feed-back controls based on dissolved oxygen (DO) and pH for production of DNA vaccines. J. Ind. Microbiol. Biotechnol. 18, 43–48.PubMedCrossRefGoogle Scholar
  107. 107.
    Bentley, W. E., Mirjalili, N., Andersen, D. C., et al., (1990) Plasmid-encoded protein: The principal factor in the “metabolic burden” associated with recombinant bacteria. Biotechnol. Bioeng. 35, 668–681.PubMedCrossRefGoogle Scholar
  108. 108.
    Engberg, B., Nordström, K. (1975) Replication of R-factor R1 in Escherichia coli K-12 at different growth rates. J. Bact. 123, 179–186.PubMedGoogle Scholar
  109. 109.
    Kim, J.Y., Ryu, D.D.Y. (1991) The effects of plasmid content, transcription efficiency, and translation efficiency on the productivity of a cloned gene protein in Escherichia coli. Biotechnol. Bioeng. 38, 1271–1279.PubMedCrossRefGoogle Scholar
  110. 110.
    Lin-Chao, S., Bremer, H. (1986) Effect of the bacterial growth rate on replication control of plasmid pBR322 in Escherichia coli. Mol. Gen. Genet. 203, 143–149.PubMedCrossRefGoogle Scholar
  111. 111.
    Ryan, W., Parulekar, S.J. (1991) Recombinant protein synthesis and plasmid instability in continuous cultures of Escherichia coli JM103 harbouring a high copy number plasmid. Biotechnol. Bioeng. 37, 415–429.PubMedCrossRefGoogle Scholar
  112. 112.
    Siegel, R., Ryu, D. D. (1985) Kinetic study of instability of recombinant plasmid pPLc23trpAI in E.  coli using two-stage continuous culture system. Biotechnol. Bioeng. 27, 28–33.PubMedCrossRefGoogle Scholar
  113. 113.
    O’Kennedy, R. D., Ward, J.M., Keshavarz-Moore, E. (2003) Effects of fermentation strategy on the characteristics of plasmid DNA production. Biotechnol. Appl. Biochem. 37, 83–90.PubMedCrossRefGoogle Scholar
  114. 114.
    Rozkov, A., Avignone-Rossa, C. A., Ertl, P. F., et al., (2006) Fed batch culture with declining specific growth rate for high-yielding production of a plasmid containing a gene therapy sequence in Escherichia coli DH1. Enzyme Microb. Technol. 39, 47–50.CrossRefGoogle Scholar
  115. 115.
    Wunderlich, M. (2010) Diploma Thesis. Technische Universität Dresden, Germany.Google Scholar
  116. 116.
    Prather, K. J., Sagar, S., Murphy, J., et al., (2003) Industrial scale production of plasmid DNA for vaccine and gene therapy: plasmid design, production, and purification. Enzyme Microbial Technol. 33, 865–883.CrossRefGoogle Scholar
  117. 117.
    Lahijani, R., Hulley, G., Soriano, G., et al., (1996) High-yield production of pBR322-derived plasmids intended for human gene therapy by employing a temperature-controllable point mutation. Hum. Gene Ther. 7, 1971–1980.PubMedCrossRefGoogle Scholar
  118. 118.
    Lin-Chao, S., Chen, W., Wong, T. (1992) High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNAII. Mol. Microbiol. 6, 3385–3393.PubMedCrossRefGoogle Scholar
  119. 119.
    Miki, T., Yasukochi, T., Nagatani, H., et al., (1987) Construction of a plasmid vector for the regulatable high level expression of eukaryotic genes in Escherichia coli: an application to overproduction of chicken lysozyme. Protein Eng. 1, 327–332.PubMedCrossRefGoogle Scholar
  120. 120.
    Wong, E. M., Muesing, M. A., Polisky, B. (1982) Temperature-sensitive copy number mutants of ColE1 are located in an untranslated region of the plasmid genome. Proc. Natl. Acad. Sci. U.S.A. 79, 3570–3574.PubMedCrossRefGoogle Scholar
  121. 121.
    Hofmann, K. H., Neubauer, P., Reithdorf, S., et al., (1990) Amplification of pBR322 plasmid DNA in Escherichia coli relA strains during batch and fed-batch fermentation. J. Basic Microbiol. 30, 37–41.PubMedCrossRefGoogle Scholar
  122. 122.
    Hecker, M., Schroeter, A., Mach, F. (1985) Escherichia coli relA strains as hosts for amplification of pBR322 plasmid DNA. FEMS Microbiol. Lett. 29, 331–334.CrossRefGoogle Scholar
  123. 123.
    Williams, J. A., Luke, J., Langtry, S., et al., (2009b) Generic plasmid DNA production platform incorporating low metabolic burden seed-stock and fed-batch fermentation processes. Biotechnol. Bioeng. 103, 1129–1243.PubMedCrossRefGoogle Scholar
  124. 124.
    O’Kennedy, R. D., Baldwin, C., Keshavarz-Moore, E. (2000) Effects of growth medium selection on plasmid DNA production and initial processing steps. J. Biotechnol. 76, 175–183.PubMedCrossRefGoogle Scholar
  125. 125.
    Voss, C., Schmidt, T., Schleef, M., et al., (2004) Effect of ammonium chloride on plasmid DNA production in high cell density batch culture for biopharmaceutical use. J. Chem. Technol. Biotechnol. 79, 57–62.CrossRefGoogle Scholar
  126. 126.
    Zheng, S., Friehs, K., He, N., et al., (2007) Optimization of medium components for plasmid production by recombinant E. coli DH5α pUK21CMVβ1.2. Biotechnol. Bioproc. Eng. 12, 213–221.CrossRefGoogle Scholar
  127. 127.
    Carnes, A. E., Luke, J. M., Vincent, J. M., et al., (2010) Plasmid DNA fermentation strain and process-specific effects on vector yield, quality and transgene expression. Biotechnol. Bioeng. In press.Google Scholar
  128. 128.
    Eiteman, M. A., Altman, E. (2006) Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol. 24, 530–536.PubMedCrossRefGoogle Scholar
  129. 129.
    De Anda, R., Lara, A. R., Hernández, V., et al., (2006) Replacement of the glucose phosphotransferase transport system by galactose permease reduces acetate accumulation and improves process performance of Escherichia coli for recombinant protein production without impairment of growth rate. Metab. Eng. 8, 281–290.PubMedCrossRefGoogle Scholar
  130. 130.
    Knoll, A., Bartsch, S., Husemann, B., et al., (2007) High cell density cultivation of recombinant yeasts and bacteria under non-pressurized and pressurized conditions in stirred tank bioreactors. J. Biotechnol. 132, 167–179.PubMedCrossRefGoogle Scholar
  131. 131.
    Lara, A. R., Knabben, I., Caspeta, L., et al., (2011) Comparison of oxygen enriched air vs pressurized cultivations to increase oxygen transfer and to scale-up plasmid DNA production fermentations. Eng. Life Sci. 11, 382–386.Google Scholar
  132. 132.
    Lara, A. R., Galindo, E., Ramírez, O. T., et al., (2006) Living with heterogeneities in bioreactors: Understanding the effects of environmental gradients on cells. Mol. Biotechnol. 34, 355–381.PubMedCrossRefGoogle Scholar
  133. 133.
    Lara, A. R., Leal, L. I., Flores, N., et al., (2006) Transcriptional and metabolic response of recombinant Escherichia coli to spatial dissolved oxygen tension gradients simulated in a scale-down system. Biotechnol. Bioeng. 93, 373–385.CrossRefGoogle Scholar
  134. 134.
    Lara A. R., Taymaz-Nikerel, H., van Gulik, W., et al., (2009) Fast dynamic response of Escherichia coli fermentative metabolism to aerobic and anaerobic glucose pulses. Biotechnol. Bioeng. 104, 1153–1161.PubMedCrossRefGoogle Scholar
  135. 135.
    Wittmann, C., Weber, J., Betiku, E., et al., (2007). Response of fluxome and metabolome to temperature-induced recombinant protein synthesis in Escherichia coli. J. Biotechnol. 132, 375–384.PubMedCrossRefGoogle Scholar
  136. 136.
    Valdéz-Cruz, N. A., Caspeta, L., Pérez, N. O., et al., (2009) Production of recombinant proteins in E. coli by the heat inducible expression system based on the phage lambda pL and/or pR promoters. Microb. Cell Fact. 9:18.CrossRefGoogle Scholar
  137. 137.
    Caspeta, L., Flores N., Pérez, N. O., et al., (2009) The effect of heating rate on Escherichia coli metabolism, physiological stress, transcriptional response, and production of temperature-induced recombinant protein: A scale-down study. Biotechnol. Bioeng. 102, 468–482.PubMedCrossRefGoogle Scholar
  138. 138.
    Levy, M. S., O’Kennedy R. O., Ayazi-Shamlou, P., et al., (2000) Biochemical engineering approaches to the challenge of producing pure plasmid DNA. Trends Biotechnol. 18, 296–305.PubMedCrossRefGoogle Scholar
  139. 139.
    Zhang, H., Kong, S., Booth, A., et al., (2008) Prediction of shear damage of plasmid DNA in pump and centrifuge operations using an ultra scale-down device. Biotechnol. Prog. 23, 858–865.Google Scholar
  140. 140.
    Birnboim, H. C., Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl. Acids Res. 7, 1513–1523.PubMedCrossRefGoogle Scholar
  141. 141.
    Clemson, M., Kelly, W. J. (2003) Optimizing alkaline lysis for plasmid DNA recovery. Biotechnol. Appl. Biochem. 37, 235–244.PubMedCrossRefGoogle Scholar
  142. 142.
    Chamsart, S., Patel, H., Hanak, J. A. J., et al., (2001) The impact of fluid-dynamic-generated stresses on chDNA and pDNA stability during alkaline cell lysis for gene therapy products. Biotechnol. Bioeng. 75, 387–392.PubMedCrossRefGoogle Scholar
  143. 143.
    Stadler, J., Lemmens, R., Nyhammar, T. (2004). Plasmid DNA purification. J. Gene Med. 6, S54-S66.Google Scholar
  144. 144.
    Voss, C. (2007). Production of plasmid DNA for pharmaceutical use. Biotechnol. Ann. Rev. 13, 201–221.CrossRefGoogle Scholar
  145. 145.
    Eon-Duval, A., MacDuff, R. H., Fisher, C. A., et al., (2003) Removal of RNA impurities by tangential flow filtration in an RNase-free plasmid DNA purification process. Anal. Biochem. 316, 66–73.PubMedCrossRefGoogle Scholar
  146. 146.
    Levy, M. S., Collins, I. J., Tsai, J. T., et al., (2000) Removal of contaminant nucleic acids by nitrocellulose filtration during pharmaceutical-grade plasmid DNA processing. J. Biotechnol. 76, 197–205.PubMedCrossRefGoogle Scholar
  147. 147.
    Kendall, D., Lye, G. J., Levy, M. S. (2002) Purification of plasmid DNA by an integrated operation comprising tangential flow filtration and nitrocellulose adsorption. Biotechnol. Bioeng. 79, 816–822.PubMedCrossRefGoogle Scholar
  148. 148.
    Darby, R. A. J., Forde, G. M., Slater N. K. H., et al., (2007) Affinity purification of plasmid DNA directly from crude bacterial cell lysates. Biotechnol. Bioeng. 98, 1103–1108.PubMedCrossRefGoogle Scholar
  149. 149.
    Diogo, M. M., Queiroz, J. A., Monteiro, G. A., et al., (2000) Purification of a cystic fibrosis plasmid vector for gene therapy using hydrophobic interaction chromatography. Biotechnol. Bioeng. 68, 576–583.PubMedCrossRefGoogle Scholar
  150. 150.
    Diogo, M. M., Ribeiro, S. C., Queiroz, J. A., et al., (2001) Production, purification and analysis of an experimental DNA vaccine against rabies. J. Gene Med. 3, 577–584.PubMedCrossRefGoogle Scholar
  151. 151.
    Eon-Duval, A., Burke, G. (2004) Purification of pharmaceutical-grade plasmid DNA by anion-exchange chromatography in an RNase-free process. J. Chrom. B. 804, 327–335.CrossRefGoogle Scholar
  152. 152.
    Sandberg, L. M., Bjurling, A., Busson, P., et al., (2004) Thiophilic interaction chromatography for supercoiled plasmid DNA purification. J. Biotechnol. 109, 193–199.PubMedCrossRefGoogle Scholar
  153. 153.
    Horn, N. A., Meek, J. A., Budahazi, G., et al., (1995) Cancer gene therapy using plasmid DNA: purification of DNA for human clinical trials. Hum. Gene Ther. 6, 565–573.PubMedCrossRefGoogle Scholar
  154. 154.
    Ferreira, G. N. M., Cabral, J. M. S., Prazeres, D. M. F. (1999) Development of process flow sheets for the purification of supercoiled plasmids for gene therapy applications. Biotechnol. Prog. 15, 725–731.PubMedCrossRefGoogle Scholar
  155. 155.
    Guerrero-Germán, P., Prazeres, D. M. F., Guzmán, R., et al., (2009) Purification of plasmid DNA using tangential flow filtration and tandem anion-exchange membrane chromatography. Bioproc. Biosyst. Eng. 32, 615–623.CrossRefGoogle Scholar
  156. 156.
    Lemmens, R., Olsson, U., Nyhammar, T., et al., (2003) Supercoiled plasmid DNA: selective purification by thiophilic/aromatic adsorption. J. Chrom. B. 784, 291–300.CrossRefGoogle Scholar
  157. 157.
    Trindade, I. P., Diogo, M. M., Prazeres, D. M. F., et al., (2005) Purification of plasmid DNA vectors by aqueous two-phase extraction and hydrophobic interaction chromatography. J. Chrom A. 1082, 176–184.CrossRefGoogle Scholar
  158. 158.
    Luechau, F., Ling, T. C., Lyddiatt, A. (2010) Two-step process for initial capture of plasmid DNA and partial removal of RNA using aqueous two-phase systems. Proc. Biochem. 45, 1432–1436.CrossRefGoogle Scholar
  159. 159.
    Schluep, T., Cooney, C. L. (1998) Purification of plasmids by triplex affinity interaction. Nucl. Acids Res. 26, 4524–4528.PubMedCrossRefGoogle Scholar
  160. 160.
    Ferreira, G. M. N., Monteiro, G. A., Prazeres, D. M. F., et al., (2000) Downstream processing of plasmid DNA for gene therapy and DNA vaccine applications. Trends Biotechnol. 18, 380–388.PubMedCrossRefGoogle Scholar
  161. 161.
    Prazeres, D. M. F., Monteiro, G. A., Ferreira, G. N. M., et al., (2001) Purification of plasmids for gene therapy and DNA vaccination. Biotechnol. Ann. Rev. 7, 1–30.CrossRefGoogle Scholar
  162. 162.
    Ferreira, G.N.M. (2005) Chromatographic approaches in the purification of plasmid DNA for therapy and vaccination. Chem. Eng. Technol. 28, 1285–1294.CrossRefGoogle Scholar
  163. 163.
    Diogo, M. M., Queiroz, J. A., Prazeres, D. M. F. (2005) Chromatography of plasmid DNA. J. Chrom. A. 1069, 3–22.CrossRefGoogle Scholar
  164. 164.
    Phue, J., Noronha, S. B., Hattacharyya, R., et al., (2005) Glucose metabolism at high cell density growth of E. coli B and E. coli K: differences in metabolic pathways are responsible for efficient utilization in E. coli B as determined by microarrays and northern blot analyses. Biotechnol. Bioeng. 90, 805–820.PubMedCrossRefGoogle Scholar
  165. 165.
    Lara, A.R., Caspeta, L., Gosset, G., et al., (2008) Utility of an Escherichia coli strain engineered in the substrate uptake system for improved culture performance at high glucose and cell concentrations: an alternative to fed-batch cultures. Biotechnol. Bioeng. 99, 893–901.PubMedCrossRefGoogle Scholar
  166. 166.
    Soto, R., Caspeta, L., Barrón, B. L., et al., (2011) High cell-density cultivation in batch mode for plasmid DNA vaccine production by a metabolically engineered E. coli strain with minimized overflow metabolism. Biochem. Eng. J. 56, 165–171.Google Scholar
  167. 167.
    Flores, S., Gosset, G., Flores, N., et al., (2002) Analysis of Carbon Metabolism in Escherichia coli Strains with an Inactive Phosphotransferase System by 13  C Labeling and NMR Spectroscopy. Metab. Eng. 4, 124–137.PubMedCrossRefGoogle Scholar
  168. 168.
    Knabben, I., Regestein, L., Marquering, F., et al., (2010) High cell-density processes in batch mode of a genetically engineered Escherichia coli strain with minimized overflow metabolism using a pressurized bioreactor. J. Biotechnol. 150, 73–79.PubMedCrossRefGoogle Scholar
  169. 169.
    Cunningham, D. S., Liu, Z., Domagalski, N., et al., (2009) Pyruvate Kinase-Deficient Escherichia coli exhibits increased plasmid copy number and cyclic AMP levels. J. Bacteriol. 191, 3041–3049.PubMedCrossRefGoogle Scholar
  170. 170.
    OW, D. S. W., Lee, D. Y., Tung, H. H., Lin-Chao, S. (2009). Plasmids regulation and systems-level effects on Escherichia coli metabolism, in Systems Biology and Biotechnology of Escherichia coli (Lee, S. Y., Ed), pp. 273–294. Springer Science, New York.CrossRefGoogle Scholar
  171. 171.
    Ow, D. S. W., Lee, R. M. Y., Nissom, P. M., et al., (2007) Inactivating FruR global regulator in plasmid-bearing Escherichia coli alters metabolic gene expression and improves growth rate. J. Biotechnol. 131, 261–269.PubMedCrossRefGoogle Scholar
  172. 172.
    Ow, D. S. W., Yap, M. G. S., Oh, S. K. W. (2009) Enhancement of plasmid DNA yields during fed-batch culture of a fruR-knockout Escherichia coli strain. Biotechnol. Appl. Biochem. 52, 53–59.PubMedCrossRefGoogle Scholar
  173. 173.
    Cunningham, D. S., Koepsel, R. R., Ataai, M. M., et al., (2009) Factors affecting plasmid production in Escherichia coli from a resource allocation standpoint. Microb. Cell Fact. 8, 27.PubMedCrossRefGoogle Scholar
  174. 174.
    Cooke, G. D., Cranenburgh, R. M., Hanak, J. A. J., et al., (2001) Purification of essentially RNA free plasmid DNA using a modified Escherichia coli host strain expressing ribonuclease A. J. Biotechnol. 85, 297–304.PubMedCrossRefGoogle Scholar
  175. 175.
    Carnes, A. E., Hodgson, C. P., Luke, J. M., et al., (2009). Plasmid DNA production combining antibiotic-free selection, inducible high yield fermentation, and novel autolytic purification. Biotechnol. Bioeng. 104, 505–515.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Departamento de Procesos y TecnologíaUniversidad Autónoma Metropolitana-CuajimalpaMexico CityMexico
  2. 2.Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico

Personalised recommendations