Isolation and Proteomic Analysis of Platelets by SELDI-TOF MS

  • Sean R. DowningEmail author
  • Giannoula L. Klement
Part of the Methods in Molecular Biology book series (MIMB, volume 818)


Many growth factors, leukotrines, and biological ligands are not circulating free in plasma or serum, except in the case of late or disseminated disease. During early tumor growth and angiogenesis, platelets actively and selectively sequester regulators of angiogenesis and, as such, the platelet protein content can be used as a marker of early tumor growth or angiogenesis. With the recent increase in the clinical use of biologic modifiers in cancer and chronic disease therapy, the search for markers of early disease, therapeutic response, and/or recurrence has suggested that analysis of platelet proteins may be more relevant and accurate. We provide a guideline for the proteomic analysis of platelet proteome, placing specific emphasis on angiogenesis regulators, even though other platelet proteins may serve as markers of disease in the future. The analysis of serum/plasma has been fraught with difficulties because of the extraordinarily large number of proteins and because some of the proteins are contained in extraordinarily large amounts, masking the less abundant proteins. Thus, platelets may provide a much more biologically relevant analyte for biomarker discovery.

Key words

Platelet Platelet proteomics Angiogenesis Markers of tumor growth Vascular endothelial growth factor (VEGF) Basic fibroblast growth factor (bFGF) Platelet-derived growth factor (PDGF) 



Coagulation, referring to a test used to measure coagulation time of whole blood


Epidermal growth factor




Basic fibroblast growth factor




Platelet rich plasma


Platelet derived growth factor


Platelet poor plasma


Surface enhanced laser desorption/ionization – time-of-flight mass spectrometry


Sinapinic acid


Trifluoroacetic acid


Vascular endothelial growth factor


  1. 1.
    Krueger, K.E. 2006. The potential of serum proteomics for detection of cancer: promise or only hope? Onkologie. 29:498–499.PubMedCrossRefGoogle Scholar
  2. 2.
    Huang, L.J., Chen, S.X., Huang, Y., Luo, W.J., Jiang, H.H., Hu, Q.H., Zhang, P.F., and Yi, H. 2006. Proteomics-based identification of secreted protein dihydrodiol dehydrogenase as a novel serum markers of non-small cell lung cancer. Lung Cancer. 54:87–94.PubMedCrossRefGoogle Scholar
  3. 3.
    Barker, P.E., Wagner, P.D., Stein, S.E., Bunk, D.M., Srivastava, S., and Omenn, G.S. 2006. Standards for plasma and serum proteomics in early cancer detection: a needs assessment report from the national institute of standards and technology--National Cancer Institute Standards, Methods, Assays, Reagents and Technologies Workshop, August 18–19, 2005. Clin Chem. 52:1669–1674.PubMedCrossRefGoogle Scholar
  4. 4.
    Kawada, N. 2006. Cancer serum proteomics in gastroenterology. Gastroenterology. 130:1917–1919.PubMedCrossRefGoogle Scholar
  5. 5.
    Wu, G.H., Wang, Y.M., Yen, A.M., Wong, J.M., Lai, H.C., Warwick, J., and Chen, T.H. 2006. Cost-effectiveness analysis of colorectal cancer screening with stool DNA testing in intermediate-incidence countries. BMC. Cancer. 6:136.PubMedCrossRefGoogle Scholar
  6. 6.
    Lim, S.B., Jeong, S.Y., Kim, I.J., Kim, D.Y., Jung, K.H., Chang, H.J., Choi, H.S., Sohn, D.K., Kang, H.C., Shin, Y. et al 2006. Analysis of microsatellite instability in stool DNA of patients with colorectal cancer using denaturing high performance liquid chromatography. World J Gastroenterol. 12:6689–6692.PubMedGoogle Scholar
  7. 7.
    Half, E.E., and Lynch, P.M. 2006. Mutated DNA in the stool--does it have a role in colorectal cancer screening? Nat. Clin Pract. Gastroenterol. Hepatol. 3:594–595.PubMedCrossRefGoogle Scholar
  8. 8.
    Zou, H., Harrington, J.J., Klatt, K.K., and Ahlquist, D.A. 2006. A sensitive method to quantify human long DNA in stool: relevance to colorectal cancer screening. Cancer Epidemiol. Biomarkers Prev. 15:1115–1119.PubMedCrossRefGoogle Scholar
  9. 9.
    Watanabe, T., Kobunai, T., Toda, E., Yamamoto, Y., Kanazawa, T., Kazama, Y., Tanaka, J., Tanaka, T., Konishi, T., Okayama, Y. et al 2006. Distal colorectal cancers with microsatellite instability (MSI) display distinct gene expression profiles that are different from proximal MSI cancers. Cancer Res. 66:9804–9808.PubMedCrossRefGoogle Scholar
  10. 10.
    Kreike, B., Halfwerk, H., Kristel, P., Glas, A., Peterse, H., Bartelink, H., and van, d., V 2006. Gene expression profiles of primary breast carcinomas from patients at high risk for local recurrence after breast-conserving therapy. Clin Cancer Res. 12:5705–5712.Google Scholar
  11. 11.
    Chang, Y., and Liu, B. 2006. Difference of gene expression profiles between Barrett’s esophagus and cardia intestinal metaplasia by gene chip. J Huazhong. Univ Sci. Technolog. Med. Sci. 26:311–313.PubMedCrossRefGoogle Scholar
  12. 12.
    Asgharzadeh, S., Pique-Regi, R., Sposto, R., Wang, H., Yang, Y., Shimada, H., Matthay, K., Buckley, J., Ortega, A., and Seeger, R.C. 2006. Prognostic significance of gene expression profiles of metastatic neuroblastomas lacking MYCN gene amplification. J Natl. Cancer Inst. 98:1193–1203.PubMedCrossRefGoogle Scholar
  13. 13.
    Folkman, J. 1971. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285:1182–1186.PubMedCrossRefGoogle Scholar
  14. 14.
    Perez-Atayde, A.R., Sallan, S.E., Tedrow, U., Connors, S., Allred, E., and Folkman, J. 1997. Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am. J. Pathol. 150:815–821.PubMedGoogle Scholar
  15. 15.
    Ribatti, D., Vacca, A., Nico, B., Quondamatteo, F., Ria, R., Minischetti, M., Marzullo, A., Herken, R., Roncali, L., and Dammacco, F. 1999. Bone marrow angiogenesis and mast cell density increase simultaneously with progression of human multiple myeloma. Br. J. Cancer. 79:451–455.PubMedCrossRefGoogle Scholar
  16. 16.
    Fuhrmann-Benzakein, E., Ma, M.N., Rubbia-Brandt, L., Mentha, G., Ruefenacht, D., Sappino, A.P., and Pepper, M.S. 2000. Elevated levels of angiogenic cytokines in the plasma of cancer patients. Int. J. Cancer. 85:40–45.PubMedCrossRefGoogle Scholar
  17. 17.
    Nguyen, M. 1997. Angiogenic factors as tumor markers. Invest New Drugs. 15:29–37.PubMedCrossRefGoogle Scholar
  18. 18.
    Dosquet, C., Coudert, M.C., Lepage, E., Cabane, J., and Richard, F. 1997. Are angiogenic factors, cytokines, and soluble adhesion molecules prognostic factors in patients with renal cell carcinoma? Clin. Cancer Res. 3:2451–2458.PubMedGoogle Scholar
  19. 19.
    Abendstein, B., Daxenbichler, G., Windbichler, G., Zeimet, A.G., Geurts, A., Sweep, F., and Marth, C. 2000. Predictive value of uPA, PAI-1, HER-2 and VEGF in the serum of ovarian cancer patients. Anticancer Res. 20:569–572.PubMedGoogle Scholar
  20. 20.
    Wong, A.K., Alfert, M., Castrillon, D.H., Shen, Q., Holash, J., Yancopoulos, G.D., and Chin, L. 2001. Excessive tumor-elaborated VEGF and its neutralization define a lethal paraneoplastic syndrome. Proc. Natl. Acad. Sci. USA 98:7481–7486.PubMedCrossRefGoogle Scholar
  21. 21.
    Rak, J., Klement, P., and Yu, J. 2006. Genetic determinants of cancer coagulopathy, angiogenesis and disease progression. Vnitr. Lek. 52 Suppl 1:135–138.PubMedGoogle Scholar
  22. 22.
    Johnson, R.A., and Roodman, G.D. 1989. Hematologic manifestations of malignancy. Dis. Mon. 35:721–768.PubMedCrossRefGoogle Scholar
  23. 23.
    Langer, H., May, A.E., Daub, K., Heinzmann, U., Lang, P., Schumm, M., Vestweber, D., Massberg, S., Schonberger, T., Pfisterer, I. et al 2006. Adherent platelets recruit and induce differentiation of murine embryonic endothelial progenitor cells to mature endothelial cells in vitro. Circ. Res. 98:e2–10.PubMedCrossRefGoogle Scholar
  24. 24.
    Werther, K., Bulow, S., Hesselfeldt, P., Jespersen, N.F., Svendsen, M.N., and Nielsen, H.J. 2002. VEGF concentrations in tumour arteries and veins from patients with rectal cancer. APMIS. 110:646–650.PubMedCrossRefGoogle Scholar
  25. 25.
    Verheul, H.M., and Pinedo, H.M. 1998. Tumor Growth: A Putative Role for Platelets? Oncologist. 3:II.Google Scholar
  26. 26.
    Verheul, H.M., Hoekman, K., Luykx-de Bakker, S., Eekman, C.A., Folman, C.C., Broxterman, H.J., and Pinedo, H.M. 1997. Platelet: transporter of vascular endothelial growth factor. Clin. Cancer Res. 3:2187–2190.PubMedGoogle Scholar
  27. 27.
    Klement, G., Yip, T.-T., Cassiola, F., Kikuchi, L., Cervi, D., Podust, V.N., Italiano, J.E., Jr., Wheatley, E., Abou-Slaybi, A., Bender, E. et al 2009. Platelets actively sequester angiogenesis regulators. Blood. 113:2835–2842.PubMedCrossRefGoogle Scholar
  28. 28.
    Italiano, J., Richardson, J.L., Folkman, J., and Klement, G. 2006. Blood Platelets Organize Pro- and Anti-Angiogenic Factors into Separate, Distinct Alpha Granules: Implications for the Regulation of Angiogenesis. ASH Annual Meeting Abstracts. 108:393.Google Scholar
  29. 29.
    Cervi, D., Yip, T.T., Bhattacharya, N., Podust, V.N., Peterson, J., bou-Slaybi, A., Naumov, G.N., Bender, E., Almog, N., Italiano, J.E.J. et al 2008. Platelet-associated PF-4 as a biomarker of early tumor growth. Blood. 111:1201–1207.Google Scholar
  30. 30.
    Cervi, D., Yip, T.T., Bhattacharya, N., Podust, V.N., Peterson, J., bou-Slaybi, A., Naumov, G.N., Bender, E., Almog, N., Italiano, J.E.J. et al 2008. Platelet-associated PF-4 as a biomarker of early tumor growth. Blood. 111:1201–1207.Google Scholar
  31. 31.
    Anderson, N.L., and Anderson, N.G. 2002. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics. 1:845–867.PubMedCrossRefGoogle Scholar
  32. 32.
    Davi, G., and Patrono, C. 2007. Platelet Activation and Atherothrombosis. N Engl J Med. 357:2482–2494.PubMedCrossRefGoogle Scholar
  33. 33.
    Michelson A.D. 2002. Platelets. Elsevier Science, Academic Press. San Diego, California, USA.Google Scholar
  34. 34.
    Hantgan, R.R., Taylor, R.G., and Lewis, J.C. 1985. Platelets interact with fibrin only after activation. Blood. 65:1299–1311.PubMedGoogle Scholar
  35. 35.
    Addonizio, V.P., Jr., Fisher, C.A., Strauss, J.F., III, Wachtfogel, Y.T., Colman, R.W., and Josephson, M.E. 1986. Effects of verapamil and diltiazem on human platelet function. Am J Physiol Heart Circ Physiol. 250:H366-H371.Google Scholar
  36. 36.
    2004. The Laboratory Mouse (Handbook of Experimental Animals). Elsevier Academic Press. London.Google Scholar
  37. 37.
    Vermeulen, R., Lan, Q., Zhang, L., Gunn, L., McCarthy, D., Woodbury, R.L., McGuire, M., Podust, V.N., Li, G., Chatterjee, N. et al 2005. Decreased levels of CXC-chemokines in serum of benzene-exposed workers identified by array-based proteomics. Proc. Natl. Acad. Sci. USA. 102:17041–17046.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Vascular Biology ProgramChildren’s Hospital BostonBostonUSA
  2. 2.Children’s HospitalBostonUSA

Personalised recommendations