In Silico Implementation of Synthetic Gene Networks

  • Mario Andrea MarchisioEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 813)


Computational synthetic biology has borrowed methods, concepts, and techniques from systems biology and electrical engineering. Features of tools for the analysis of biochemical networks and the design of electric circuits have been combined to develop new software, where Standard Biological Parts (physically stored at the MIT Registry) have a mathematical description, based on mass action or Hill kinetics, and can be assembled into genetic networks in a visual, “drag & drop” fashion. Recent tools provide the user with databases, simulation environments, formal languages, and even algorithms for circuit automatic design to refine and speed up gene network construction. Moreover, advances in automation of DNA assembly indicate that synthetic biology software soon will drive the wet-lab implementation of DNA sequences.

Key words

Standard Biological Parts Gene circuits Part composability Visual design Formal language Automation DNA assembly 


  1. 1.
    Nagel, L. W., and Pederson, D. O. (1973). SPICE (Simulation Program with Integrated Circuit Emphasis). Memorandum No. ERL-M382, University of California, Berkley.Google Scholar
  2. 2.
    Endy, D. (2005) Foundations for engineering biology, Nature 438, 449–453.PubMedCrossRefGoogle Scholar
  3. 3.
    Szallasi, Z., Stelling, J., and Periwal (2006) System Modeling in Cellular Biology, The MIT Press, Cambridge, MA.Google Scholar
  4. 4.
    Funahashi, A., Tanimura, N., Morohashi, M., and Kitano, H. (2003) CellDesigner: a process diagram editor for gene-regulatory and biochemical networks, BIOSILICO 1, 159–162.CrossRefGoogle Scholar
  5. 5.
    Funahashi, A., Matsuoka, Y., Jourako, A., Morohashi, M., Kikuchi, N., and Kitano, H. CellDesigner 3.5: A Versatile Modeling Tool for Biochemical Networks, In Proceedings of the IEEE 8 ed., pp 1254–1265.Google Scholar
  6. 6.
    Hucka, M., and others. (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models, Bioinformatics 19, 524–531.PubMedCrossRefGoogle Scholar
  7. 7.
    Novere, N. L., Bornstein, B., Broicher, A., Courtot, M. l., Donizelli, M., Dharuri, H., Li, L., Sauro, H., Schilstra, M., Shapiro, B., Snoep, J. L., and Hucka, M. (2006) BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems, Nucleic Acids Res 34, D689-D691.PubMedCrossRefGoogle Scholar
  8. 8.
    Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res 13, 2498–2504.PubMedCrossRefGoogle Scholar
  9. 9.
    Martin, A., Ochagavia, M. E., Rabasa, L. C., Miranda, J., de Cossio, J. F., and Bringas, R. BisoGenet: a new tool for gene network building, visualization and analysis, BMC Bioinformatics 11:91.Google Scholar
  10. 10.
    Kurata, H., Matoba, N., and Shimizu, N. (2003) CADLIVE for constructing a large-scale biochemical network based on a simulation-directed notation and its application to yeast cell cycle, Nucleic Acids Res 31, 4071–4084.PubMedCrossRefGoogle Scholar
  11. 11.
    Kurata, H., Masaki, K., Sumida, Y., and Iwasaki, R. (2005) CADLIVE dynamic simulator: direct link of biochemical networks to dynamic models, Genome Res 15, 590–600.PubMedCrossRefGoogle Scholar
  12. 12.
    Loew, L. M., and Schaff, J. C. (2001) The Virtual Cell: a software environment for computational cell biology, Trends Biotechnol 19, 401–406.PubMedCrossRefGoogle Scholar
  13. 13.
    Sauro, H. M., Hucka, M., Finney, A., Wellock, C., Bolouri, H., Doyle, J., and Kitano, H. (2003) Next generation simulation tools: the Systems Biology Workbench and BioSPICE integration, OMICS 7, 355–372.PubMedCrossRefGoogle Scholar
  14. 14.
    Longabaugh, W. J. R., Davidson, E. H., and Bolouri, H. (2005) Computational representation of developmental genetic regulatory networks, Dev Biol 283, 1–16.PubMedCrossRefGoogle Scholar
  15. 15.
    Goler, J. A. (2004) BioJADE: A Design and Simulation Tool for Synthetic Biological Systems. AITR-2004-003. MIT, Cambridge, MA.Google Scholar
  16. 16.
    Goler, J. A., Bramlett, B. W., and Peccoud, J. (2008) Genetic design: rising above the sequence, Trends Biotechnol 26, 538–544.PubMedCrossRefGoogle Scholar
  17. 17.
    Kosuri, S., Kelly, J., and Endy, D. (2007) TABASCO: A single molecule, base-pair resolved gene expression simulator, BMC Bioinformatics 8:480.PubMedCrossRefGoogle Scholar
  18. 18.
    Endy, D., Deese, I., and the, M. I. T. S. B. W. G. (2005). Adventures in synthetic biology. Appeared in Foundations for engineering biology p449, Nature, 438, 449–453.Google Scholar
  19. 19.
    Marchisio, M. A., and Stelling, J. (2008) Computational design of synthetic gene circuits with composable parts, Bioinformatics 24, 1903–1910.PubMedCrossRefGoogle Scholar
  20. 20.
    Marchisio, M. A., and Stelling, J. Synthetic gene network computational design, In Proc. IEEE International Symposium on Circuits and Systems, ISCAS 2009, pp 309–312.Google Scholar
  21. 21.
    Serganov, A., and Patel, D. J. (2007) Ribozymes, riboswitches and beyond: regulation of gene expression without proteins, Nat Rev Genet 8, 776–790.PubMedCrossRefGoogle Scholar
  22. 22.
    Mirschel, S., Steinmetz, K., Rempel, M., Ginkel, M., and Gilles, E. D. (2009) PROMOT: modular modeling for systems biology, Bioinformatics 25, 687–689.PubMedCrossRefGoogle Scholar
  23. 23.
    Ginkel, M., Kremling, A., Nutsch, T., Rehner, R., and Gilles, E. D. (2003) Modular modeling of cellular systems with ProMoT/Diva, Bioinfor-matics 19, 1169–1176.PubMedCrossRefGoogle Scholar
  24. 24.
    Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, Jr., Simus, N., Singhal, M., Xu, L., Mendes, P., and Kummer, U. (2006) COPASI – a COmplex PAthway SImulator, Bioinformatics 22, 3067–3074.PubMedCrossRefGoogle Scholar
  25. 25.
    Rodrigo, G., Carrera, J., and Jaramillo, A. (2008) Asmparts: assembly of biological model parts, Syst Synth Biol 1, 167–170.CrossRefGoogle Scholar
  26. 26.
    Cooling, M. T., Rouilly, V., Misirli, G., Lawson, J., Yu, T., Hallinan, J., and Wipat, A. Standard virtual biological parts: a repository of modular modeling components for synthetic biology, Bioinformatics 26, 925–931.Google Scholar
  27. 27.
    Rouilly, V., Canton, B., Nielsen, P., and Kitney, R. (2007) Registry of BioBrick models using CellML, BMC System Biology 1 Suppl 1, 79–80.CrossRefGoogle Scholar
  28. 28.
    Cuellar, A. A., Lloyd, C. M., Nielsen, P. F., Bullivant, D. P., Nickerson, D. P., and Hunter, P. J. (2003) An Overview of CellML 1.1, a Biological Model Description Language, Simulation 79, 740–747.CrossRefGoogle Scholar
  29. 29.
    Garny, A., Nickerson, D. P., Cooper, J., dos Santos, R. W., Miller, A. K., McKeever, S., Nielsen, P. M. F., and Hunter, P. J. (2008) CellML and associated tools and techniques, Philos Transact A Math Phys Eng Sci 366, 3017–3043.PubMedCrossRefGoogle Scholar
  30. 30.
    Chandran, D., Bergmann, F. T., and Sauro, H. M. (2009) TinkerCell: modular CAD tool for synthetic biology, J Biol Eng 3:19.PubMedCrossRefGoogle Scholar
  31. 31.
    Smith, L. P., Bergmann, F. T., Chandran, D., and Sauro, H. M. (2009) Antimony: a modular model definition language, Bioinformatics 25, 2452–2454.PubMedCrossRefGoogle Scholar
  32. 32.
    Hill, A. D., Tomshine, J. R., Weeding, E. M. B., Sotiropoulos, V., and Kaznessis, Y. N. (2008) SynBioSS: the synthetic biology modeling suite, Bioinformatics 24, 2551–2553.PubMedCrossRefGoogle Scholar
  33. 33.
    Weeding, E., Houle, J., and Kaznessis, Y. N. SynBioSS designer: a web-based tool for the automated generation of kinetic models for synthetic biological constructs, Brief Bioinform 11, 394–402.Google Scholar
  34. 34.
    Salis, H., Sotiropoulos, V., and Kaznessis, Y. N. (2006) Multiscale Hy3S: hybrid stochastic simulation for supercomputers, BMC Bioinfor-matics 7:93.PubMedCrossRefGoogle Scholar
  35. 35.
    Blinov, M. L., Faeder, J. R., Goldstein, B., and Hlavacek, W. S. (2004) BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains, Bioinformatics 20, 3289–3291.PubMedCrossRefGoogle Scholar
  36. 36.
    Faeder, J. R., Blinov, M. L., and Hlavacek, W. S. (2009) Rule-based modeling of biochemical systems with BioNetGen, Methods Mol Biol 500, 113–167.PubMedCrossRefGoogle Scholar
  37. 37.
    Danos, V., and Laneve, C. (2004) Formal molecular biology, Theoretical Computational Science 325, 69–110.CrossRefGoogle Scholar
  38. 38.
    Novere, N. L., and Shimizu, T. S. (2001) STOCHSIM: modelling of stochastic biomolecular processes, Bioinformatics 17, 575–576.PubMedCrossRefGoogle Scholar
  39. 39.
    Feret, Jrm., Danos, V., Krivine, J., Harmer, R., and Fontana, W. (2009) Internal coarse-graining of molecular systems, Proc Natl Acad Sci USA 106, 6453–6458.PubMedCrossRefGoogle Scholar
  40. 40.
    Fages, F., Soliman, S., and Chabrier-Rivier, N. (2004) Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM, Journal of Biological Physics and Chemistry 4, 64–73.CrossRefGoogle Scholar
  41. 41.
    Regev, A., Silverman, W., and Shapiro, E. (2001) Representation and simulation of biochemical processes using the pi-calculus process algebra, Pac Symp Biocomput, 459–470.Google Scholar
  42. 42.
    Ciocchetta, F., and Hillston, J. (2008) Bio-PEPA: An Extension of the Process Algebra PEPA for Biochemical Networks, Electronic Notes in Theoretical Computational Science 194, 103–117.CrossRefGoogle Scholar
  43. 43.
    Pedersen, M., and Phillips, A. (2009) Towards programming languages for genetic engineering of living cells, J R Soc Interface 6 Suppl 4, S437–S450.PubMedCrossRefGoogle Scholar
  44. 44.
    Cai, Y., Hartnett, B., Gustafsson, C., and Peccoud, J. (2007) A syntactic model to design and verify synthetic genetic constructs derived from standard biological parts, Bioinformatics 23, 2760–2767.PubMedCrossRefGoogle Scholar
  45. 45.
    Czar, M. J., Cai, Y., and Peccoud, J. (2009) Writing DNA with GenoCAD, Nucleic Acids Res 37, W40-W47.PubMedCrossRefGoogle Scholar
  46. 46.
    Monteiro, P. T., Dumas, E., Besson, B., Mateescu, R., Page, M., Freitas, A. T., and de Jong, H. (2009) A service-oriented architecture for integrating the modeling and formal verification of genetic regulatory networks, BMC Bioinformatics 10:450.PubMedCrossRefGoogle Scholar
  47. 47.
    Saez-Rodriguez, J., Gayer, S., Ginkel, M., and Gilles, E. D. (2008) Automatic decomposition of kinetic models of signaling networks minimizing the retroactivity among modules, Bioinformatics 24, 213–219.CrossRefGoogle Scholar
  48. 48.
    Beal, J., and Bachrach, J. (2006) Infrastructure for Engineered Emergence on Sensor/Actuator Networks, IEEE Intelligent Systems 21 (2), 10–19.CrossRefGoogle Scholar
  49. 49.
    Mallavarapu, A., Thomson, M., Ullian, B., and Gunawardena, J. (2009) Programming with models: modularity and abstraction provide powerful capabilities for systems biology, J R Soc Interface 6, 257–270.PubMedCrossRefGoogle Scholar
  50. 50.
    Batt, Gg., Yordanov, B., Weiss, R., and Belta, C. (2007) Robustness analysis and tuning of synthetic gene networks, Bioinformatics 23, 2415–2422.PubMedCrossRefGoogle Scholar
  51. 51.
    Francois, P., and Hakim, V. (2004) Design of genetic networks with specified functions by evolution in silico, Proc Natl Acad Sci USA 101, 580–585.PubMedCrossRefGoogle Scholar
  52. 52.
    Paladugu, S. R., Chickarmane, V., Deckard, A., Frumkin, J. P., McCormack, M., and Sauro, H. M. (2006) In silico evolution of functional modules in biochemical networks, Syst Biol (Stevenage) 153, 223–235.CrossRefGoogle Scholar
  53. 53.
    Rodrigo, G., Carrera, J., and Jaramillo, A. (2007) Genetdes: automatic design of transcriptional networks, Bioinformatics 23, 1857–1858.PubMedCrossRefGoogle Scholar
  54. 54.
    Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983) Optimization by Simulated Annealing, Science 220, 671–680.PubMedCrossRefGoogle Scholar
  55. 55.
    Rodrigo, G., and Jaramillo, A. (2007) Computational design of digital and memory biological devices, Syst Synth Biol 1, 183–195.PubMedCrossRefGoogle Scholar
  56. 56.
    Dasika, M. S., and Maranas, C. D. (2008) OptCircuit: an optimization based method for computational design of genetic circuits, BMC Syst Biol 2:24.PubMedCrossRefGoogle Scholar
  57. 57.
    Marchisio, M. A., and Stelling, Jr. (2011) Automatic Design of Digital Synthetic Gene Circuits, PLoS Comput Biol 7, e1001083.PubMedCrossRefGoogle Scholar
  58. 58.
    Karnaugh, M. (1953) The Map Method for Synthesis of Combinational Logic Circuits, Transactions of the American Institute of Electrical Engineers 72 (9), 593–599.Google Scholar
  59. 59.
    Richardson, S. M., Nunley, P. W., Yarrington, R. M., Boeke, J. D., and Bader, J. S. GeneDesign 3.0 is an updated synthetic biology toolkit, Nucleic Acids Res 38, 2603–2606.Google Scholar
  60. 60.
    Villalobos, A., Ness, J. E., Gustafsson, C., Minshull, J., and Govindarajan, S. (2006) Gene Designer: a synthetic biology tool for constructing artificial DNA segments, BMC Bioinformatics 7:285.PubMedCrossRefGoogle Scholar
  61. 61.
    Jayaraj, S., Reid, R., and Santi, D. V. (2005) GeMS: an advanced software package for designing synthetic genes, Nucleic Acids Res 33, 3011–3016.PubMedCrossRefGoogle Scholar
  62. 62.
    Hoover, D. M., and Lubkowski, J. (2002) DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis, Nucleic Acids Res 30 (10):e43.PubMedCrossRefGoogle Scholar
  63. 63.
    Rouillard, J.-M., Lee, W., Truan, G., Gao, X., Zhou, X., and Gulari, E. (2004) Gene2Oligo: oligonucleotide design for in vitro gene synthesis, Nucleic Acids Res 32, W176-W180.PubMedCrossRefGoogle Scholar
  64. 64.
    Mandell, J. G., and Barbas, C. F. (2006) Zinc Finger Tools: custom DNA-binding domains for transcription factors and nucleases, Nucleic Acids Res 34, W516-W523.PubMedCrossRefGoogle Scholar
  65. 65.
    Vincze, T., Posfai, J., and Roberts, R. J. (2003) NEBcutter: A program to cleave DNA with restriction enzymes, Nucleic Acids Res 31, 3688–3691.PubMedCrossRefGoogle Scholar
  66. 66.
    Lee, P. A., Dymond, J. S., Scheifele, L. Z., Richardson, S. M., Foelber, K. J., Boeke, J. D., and Bader, J. S. CLONEQC: lightweight sequence verification for synthetic biology, Nucleic Acids Res 38, 2617–2623.Google Scholar
  67. 67.
    Markham, N. R., and Zuker, M. (2008) UNAFold: software for nucleic acid folding and hybridization, Methods Mol Biol 453, 3–31.PubMedCrossRefGoogle Scholar
  68. 68.
    Markham, N. R., and Zuker, M. (2005) DINAMelt web server for nucleic acid melting prediction, Nucleic Acids Res 33, W577-W581.PubMedCrossRefGoogle Scholar
  69. 69.
    Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M., and Schuster, P. (1994) Fast Folding and Comparision of RNA Secondary Strucutre, Monatshefte fuer Chemie 125, 167–188.CrossRefGoogle Scholar
  70. 70.
    Hofacker, I. L. (2003) Vienna RNA secondary structure server, Nucleic Acids Res 31, 3429–3431.PubMedCrossRefGoogle Scholar
  71. 71.
    Popenda, M., Szachniuk, M., Blazewicz, M., Wasik, S., Burke, E. K., Blazewicz, J., and Adamiak, R. W. RNA FRABASE 2.0: an advanced web-accessible database with the capacity to search the three-dimensional fragments within RNA structures, BMC Bioinformatics 11:231.Google Scholar
  72. 72.
    Simons, K. T., Bonneau, R., Ruczinski, I., and Baker, D. (1999) Ab initio protein structure prediction of CASP III targets using ROSETTA, Proteins Suppl 3, 171–176.CrossRefGoogle Scholar
  73. 73.
    Xu, J., Li, M., Kim, D., and Xu, Y. (2003) RAPTOR: optimal protein threading by linear programming, J Bioinform Comput Biol 1, 95–117.PubMedCrossRefGoogle Scholar
  74. 74.
    Soeding, J., Biegert, A., and Lupas, A. N. (2005) The HHpred interactive server for protein homology detection and structure prediction, Nucleic Acids Res 33, W244-W248.CrossRefGoogle Scholar
  75. 75.
    Eswar, N., Webb, B., Marti-Renom, M. A., Madhusudhan, M. S., Eramian, D., Shen, M.-Y., Pieper, U., and Sali, A. (2007) Comparative protein structure modeling using MODELLER, Curr Protoc Protein Sci Chapter 2:Unit 2.9. Google Scholar
  76. 76.
    Pokala, N., and Handel, T. M. (2005) Energy functions for protein design: adjustment with protein-protein complex affinities, models for the unfolded state, and negative design of solubility and specificity, J Mol Biol 347, 203–227.PubMedCrossRefGoogle Scholar
  77. 77.
    Suarez, M., Tortosa, P., and Jaramillo, A. (2008) PROTDES: CHARMM toolbox for computational protein design, Syst Synth Biol 2, 105–113.PubMedCrossRefGoogle Scholar
  78. 78.
    Hawkins, T., Luban, S., and Kihara, D. (2006) Enhanced automated function prediction using distantly related sequences and contextual association by PFP, Protein Sci 15, 1550–1556.PubMedCrossRefGoogle Scholar
  79. 79.
    Hawkins, T., Chitale, M., Luban, S., and Kihara, D. (2009) PFP: Automated prediction of gene ontology functional annotations with confidence scores using protein sequence data, Proteins 74, 566–582.PubMedCrossRefGoogle Scholar
  80. 80.
    Kelley, L. A., and Sternberg, M. J. E. (2009) Protein structure prediction on the Web: a case study using the Phyre server, Nat Protoc 4, 363–371.PubMedCrossRefGoogle Scholar
  81. 81.
    Roy, A., Kucukural, A., and Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction, Nat Protoc 5, 725–738.Google Scholar
  82. 82.
    Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., and Olson, A. J. (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J Comput Chem 30, 2785–2791.PubMedCrossRefGoogle Scholar
  83. 83.
    Macindoe, G., Mavridis, L., Venkatraman, V., Devignes, M.-D., and Ritchie, D. W. HexServer: an FFT-based protein docking server powered by graphics processors, Nucleic Acids Res 38 Suppl, W445-W449.Google Scholar
  84. 84.
    Gruenberg, R., Nilges, M., and Leckner, J. (2007) Biskit-a software platform for structural bioinformatics, Bioinformatics 23, 769–770.CrossRefGoogle Scholar
  85. 85.
    Canton, B., Labno, A., and Endy, D. (2008) Refinement and standardization of synthetic biological parts and devices, Nat Biotechnol 26, 787–793.PubMedCrossRefGoogle Scholar
  86. 86.
    Kramer, B. P., Fischer, C., and Fussenegger, M. (2004) BioLogic gates enable logical transcription control in mammalian cells, Biotechnol Bioeng 87, 478–484.PubMedCrossRefGoogle Scholar
  87. 87.
    Ajo-Franklin, C. M., Drubin, D. A., Eskin, J. A., Gee, E. P. S., Landgraf, D., Phillips, I., and Silver, P. A. (2007) Rational design of memory in eukaryotic cells, Genes Dev 21, 2271–2276.PubMedCrossRefGoogle Scholar
  88. 88.
    Tigges, M., Marquez-Lago, T. T., Stelling, J., and Fussenegger, M. (2009) A tunable synthetic mammalian oscillator, Nature 457, 309–312.PubMedCrossRefGoogle Scholar
  89. 89.
    Isaacs, F. J., Dwyer, D. J., and Collins, J. J. (2006) RNA synthetic biology, Nat Biotechnol 24, 545–554.PubMedCrossRefGoogle Scholar
  90. 90.
    Breaker, R. R. (2008) Complex riboswitches, Science 319, 1795–1797.PubMedCrossRefGoogle Scholar
  91. 91.
    Win, M. N., and Smolke, C. D. (2008) Higher-order cellular information processing with synthetic RNA devices, Science 322, 456–460.PubMedCrossRefGoogle Scholar
  92. 92.
    Bayer, T. S., and Smolke, C. D. (2005) Programmable ligand-controlled riboregulators of eukaryotic gene expression, Nat Biotechnol 23, 337–343.PubMedCrossRefGoogle Scholar
  93. 93.
    Win, M. N., Liang, J. C., and Smolke, C. D. (2009) Frameworks for programming biological function through RNA parts and devices, Chem Biol 16, 298–310.PubMedCrossRefGoogle Scholar
  94. 94.
    Marchisio, M. A., and Rudolf, F. (2011) Synthetic biosensing systems, Int J Biochem Cell Biol 43, 310–319.PubMedCrossRefGoogle Scholar
  95. 95.
    Gruenberg, R., and Serrano, L. (2010) Strategies for protein synthetic biology, Nucleic Acids Res 38, 2663–2675.CrossRefGoogle Scholar
  96. 96.
    Rialle, S. p., Felicori, L., Dias-Lopes, C., Peres, S., Atia, S. E., Thierry, A. R., Amar, P., and Molina, F. BioNetCAD: design, simulation and experimental validation of synthetic biochemical networks, Bioinformatics 26 (18), 2298–2304.Google Scholar
  97. 97.
    Densmore, D., Hsiau, T. H. C., Kittleson, J. T., DeLoache, W., Batten, C., and Anderson, J. C. Algorithms for automated DNA assembly, Nucleic Acids Res 38, 2607–2616.Google Scholar
  98. 98.
    Linshiz, G., Yehezkel, T. B., Kaplan, S., Gronau, I., Ravid, S., Adar, R., and Shapiro, E. (2008) Recursive construction of perfect DNA molecules from imperfect oligonucleotides, Mol Syst Biol 4:191.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Biosystems Science and EngineeringETH ZurichBaselSwitzerland

Personalised recommendations