Advertisement

Design of Biomolecules for Nanoengineered Biomaterials for Regenerative Medicine

  • Alvaro Mata
  • Liam Palmer
  • Esther Tejeda-Montes
  • Samuel I. Stupp
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 811)

Abstract

An important goal in the development of highly functional organic materials is to design self-assembling molecules that can reproducibly display chemical signals across length scales. Within the biomedical field, biomolecules are highly attractive candidates to serve as bioactive building blocks for the next generation of biomaterials. The peptide amphiphiles (PAs) developed by the Stupp Laboratory at Northwestern University generated a highly versatile self-assembly code to create well-defined bioactive nanofibers that have been proven to be very effective at signaling cells in vitro and in vivo. Here, we describe the basic steps necessary for synthesis and assembly of PA molecules into functional nanostructures.

Key words

Peptide amphiphiles Peptide synthesis Biomolecules Regenerative medicine Biomaterials 

References

  1. 1.
    Huebsch, N., Mooney, D. (2009) Inspiration and application in the evolution of biomaterials Nature 462, 426–432.Google Scholar
  2. 2.
    Stevens, M.M., George, J.H. (2005) Exploring and engineering the cell surface interface Science 310, 1135–1138.Google Scholar
  3. 3.
    Furth, M. E., Atala, A. (2008) Current and future perspectives of regenerative medicine. Principles of Regenerative Medicine. Burlington MA: Elsevier.Google Scholar
  4. 4.
    Stupp, S. I. (2005) Biomaterials for regenerative medicine MRS Bulletin 30, 546–553.CrossRefGoogle Scholar
  5. 5.
    Hartgerink, J.D., Beniash, E., Stupp, S. I. (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers Science 294, 1684–1688.Google Scholar
  6. 6.
    Hartgerink, J.D., Beniash, E., Stupp, S.I. (2002) Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials Proceedings of the National Academy of Sciences of the United States of America 99, 5133–5138.Google Scholar
  7. 7.
    Paramanov, S.E., Gauba, V., Hartgerink, J.D. (2005) Synthesis of collagen-like peptide polymers by native chemical ligation Macromolecules 38, 7555–7561.Google Scholar
  8. 8.
    Betre, H., Setton, L.A., Meyer, D.E., Chilkoti, A. (2002) Characterization of a genetically engineered elastin-like polypeptide for cartilaginous tissue repair Biomacromolecules 3, 910–916.Google Scholar
  9. 9.
    Zhao, X., Zhang, S. (2007) Designer self-assembling peptide materials Macromolecular Biosciences 7, 13–22.Google Scholar
  10. 10.
    Aggeli, A., Bell, M., Carrick, L.M., Fishwick, C.W.G., Harding, R., Mawer, P.J., Radford, S.E., Strong, A.E., Boden, N. (2003) pH as a trigger of peptide b-sheet self-assembly and reversible switching between nematic and isotropic phases Journal of the American Chemical Society 125, 9619–9628.CrossRefGoogle Scholar
  11. 11.
    Williams, R.J., Smith, A.M., Collins, R., Hodson, N., Das, A.K., Ulijn, R.V. (2009) Enzyme-assisted self-assembly under thermodynamic control Nature Nanotechnology 4, 19–24.Google Scholar
  12. 12.
    Schneider, J.P., Pochan, D.J., Ozbas, B., Rajagopal, K., Pakstis, L., Kretsinger, J. (2002) Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide Journal of the American Chemical Society 124, 15030–15037.Google Scholar
  13. 13.
    Zhang, S., Holmes, T., Lockshin, C., Rich, A. (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane Proceeding of the National Academy of Sciences of the United States of America 90, 3334–3338.CrossRefGoogle Scholar
  14. 14.
    Silva, G.A., Czeisler, C., Niece, K.L., Beniash, E., Harrington, D.A., Kessler, J. A., Stupp, S. I. (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers Science 303(5662), 1352–1355.Google Scholar
  15. 15.
    Guler, M.O., Soukasene, S., Hulvat, J.F., Stupp, S.I. (2005) Presentation and recognition of biotin on nanofibers formed by branched peptide amphiphiles. Nano Letters 5(2), 249–252.CrossRefGoogle Scholar
  16. 16.
    Rajangam, K., Behanna, H.A., Hui, M.J., Han, X., Hulvat, J.F., Lomasney, J.W., Stupp, S.I. (2006) Heparin binding nanostructures to promote growth of blood vessels Nano Letters 6, 2086–2090.Google Scholar
  17. 17.
    Storrie, H., Guler, M.O., Abu-Amara, S.N., Volberg, T., Rao, M., Geiger, B., Stupp, S.I. (2007) Supramolecular crafting of cell adhesion Biomaterials 28, 4608–4618.Google Scholar
  18. 18.
    Stendahl, J.C., Want, L.J., Chow, L.W., Kaufman, D.B., Stupp, S.I. (2008) Growth factor delivery from self-assembling nanofibers to facilitate islet transplantation Transplantation 86(3), 478–481.CrossRefGoogle Scholar
  19. 19.
    Capito, R., Azevedo, H., Gelichko, Y., Mata, A., Stupp, S.I. (2008) Self-assembly of large and small molecules into hierarchically ordered sacs and membranes Science 319, 1812–1816.Google Scholar
  20. 20.
    Kapadia, M. R., Chow, L.W., Tsihlis, N.D., Ahanchi, S.S., Eng, J.W., Murar, J., Martinez, J., Popowich, D.A., Jiang, Q., Hrabie, J.A., Saavedra, J.E., Keefer, L.K., Hulvat, J.F., Stupp, S.I., Kibbe, M.R. (2008) Nitric oxide and nanotechnology: A novel approach to inhibit neointimal hyperplasia Journal of Vascular Surgery 47(1), 173–182.Google Scholar
  21. 21.
    Tysseling-Mattiace, V.M., Sahni, V., Niece, K.L., Birch, D., Czeisler, C., Fehlings, M.G., Stupp, S.I., Kessler, J.A. (2008) Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury The Journal of Neuroscience 28(14), 3814–3823.Google Scholar
  22. 22.
    Rajangam, K., Arnold, M.S., Rocco, M.A., Stupp, S.I. (2008) Peptide amphiphile nanostructure-heparin interactions and their relationship to bioactivity Biomaterials 29, 293298–293305.Google Scholar
  23. 23.
    Sargeant, T.D., Guler, M.O., Oppenheimer, S.M., Mata, A., Satcher, R.L., Dunand, D.C., Stupp, S.I. (2008) Hybrid bone implants: Self-assembly of peptide amphiphile nanofibers within porous titanium Biomaterials 29(2), 161–171.Google Scholar
  24. 24.
    Sargeant, T. D., Rao, M.S., Koh, C.Y., Stupp, S.I. (2008) Covalent functionalization of NiTi surfaces with bioactive peptide amphiphile nanofibers Biomaterials 29(8), 1085–1098.Google Scholar
  25. 25.
    Spoerke, E.D., Anthony, S.G., Stupp, S.I. (2009) Enzyme Directed Templating of Artificial Bone Mineral Advanced Materials 21(4), 425–430.Google Scholar
  26. 26.
    Mata, A., Hsu, L., Capito, R., Aparicio, C., Henrikson, K., Stupp, S.I. (2009) Micropatterning of bioactive self-assembling gels Soft Matter 5, 1228–1236.CrossRefGoogle Scholar
  27. 27.
    Webber, M.J., Tongers, J., Renault, M.A., Roncalli, J.G., Losordo, D.W., Stupp, S.I. (2009) Development of bioactive peptide amphiphiles for therapeutic cell delivery Acta Biomateriala 6, 3–11.Google Scholar
  28. 28.
    Mata, A., Geng, Y., Henrikson, K., Aparicio, C., Stock, S., Satcher, R., Stupp, S.I. (2010) Bone regeneration mediated by biomimetic mineralization of a nanofiber matrix Biomaterials 31, 6004–6012.Google Scholar
  29. 29.
    Shah, R.N., Shah, N.A., Del Rosario Lim, M.M., Hsieh, C., Nuber, G., Stupp, S.I. (2010) Supramolecular design of self-assembling nanofibers for cartilage regeneration Proceedings of the National Academy of Sciences of the United States of America 107(8), 3293–3298.Google Scholar
  30. 30.
    Chow, L.W., Wang, L.J., Kaufman, D.B., Stupp, S.I. (2010) Self-assembling nanostructures to deliver angiogenic factors to pancreatic islets Biomaterials 31(24), 6154–6161.Google Scholar
  31. 31.
    Standley, S.M., Toft, D.T., Cheng, H., Soukasene, S., Chen, J., Raja, S.M., Band, V., Band, H., Cryns, V.L, Stupp, S.I. Induction of Cancer Cell Death by Self-assembling Nanostructures Incorporating a Cytotoxic Peptide Cancer Research. (available online Res. 0: 0008–5472.CAN-09-3267v1).Google Scholar
  32. 32.
    Muraoka, T., Koh, C.Y., Cui, H., Stupp, S.I. (2009) Light-triggered bioactivity in three-dimensions Angewante Chemie International Edition 48, 5946–5949.Google Scholar
  33. 33.
    Ghanaati, S., Webber, M.J., Unger, R.E., Orth, C., Hulvat, J.F., Kiehna, S.E., Barbeck, M., Rasic, A., Stupp, S.I. (2009) Dynamic in vivo biocompatibility of angiogenic peptide amphiphile nanofibers Biomaterials 30, 6202–6212.Google Scholar
  34. 34.
    Behanna, H.A., Donners, J.J.J.M, Gordon, A.C., Stupp, S.I. (2005) Coassembly of amphiphiles with opposite polarities into nanofibers Journal of the American Chemical Society 127, 1193–1200.CrossRefGoogle Scholar
  35. 35.
    Greenfield, M.A., Hoffman, J.R., de la Cruz, M.O., Stupp, S.I. (2010) Tunable Mechanics of Peptide Nanofiber Gels Langmuir 26(5), 3641–3647.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Alvaro Mata
    • 1
  • Liam Palmer
    • 2
  • Esther Tejeda-Montes
    • 1
  • Samuel I. Stupp
    • 3
    • 4
    • 5
  1. 1.The Nanotechnology PlatformParc Científic BarcelonaBarcelonaSpain
  2. 2.Department of ChemistryNorthwestern UniversityEvanstonUSA
  3. 3.Department of ChemistryNorthwestern UniversityEvanstonUSA
  4. 4.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA
  5. 5.Institute for BioNanotechnology in MedicineNorthwestern UniversityEvanstonUSA

Personalised recommendations