Carbohydrate Microarrays pp 69-86

Part of the Methods in Molecular Biology book series (MIMB, volume 808)

Polypyrrole-Oligosaccharide Microarray for the Measurement of Biomolecular Interactions by Surface Plasmon Resonance Imaging

Protocol

Abstract

The polypyrrole approach initially developed for the construction of DNA chips, has been extended to other biochemical compounds such as proteins and more recently oligosaccharides. The copolymerization of a pyrrole monomer with a biomolecule bearing a pyrrole group by an electrochemical process allows a very fast coupling of the biomolecule (probe) to a gold layer used as a working electrode. Fluorescence-based detection is the reference method to detect interactions on biochips; however an alternative label free method, could be more convenient for rapid screening of biointeractions. Surface Plasmon Resonance (SPRi) is a typical label-free method for real time detection of the binding of biological molecules onto functionalized surfaces. This surface sensitive optical method is based upon evanescent wave sensing on a thin metal layer. The SPR approach described herein is performed in an imaging geometry that allows simultaneous monitoring of biorecognition reactions occurring on an array of immobilized probes (chip). In a SPR imaging experiment, local changes in the reflectivity are recorded with a CCD camera and are exploited to monitor up to 100 different biological reactions occurring onto the molecules linked to the polypyrrole matrix. This method will be applied to oligosaccharide recognition.

Key words

Polypyrrole Oligosaccharide Array Biochip Surface plasmon resonance 

References

  1. 1.
    Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251(4995): 767–73PubMedCrossRefGoogle Scholar
  2. 2.
    R. Frank (1992) Spot synthesis of peptides on membrane supports. Tetrahedron 48:9217–32CrossRefGoogle Scholar
  3. 3.
    Ban L, Mrksich M (2008) On-chip synthesis and label-free assays of oligosaccharide arrays. Angew Chem Int Ed Engl 47(18):3396–9PubMedCrossRefGoogle Scholar
  4. 4.
    Kiessling LL, Splain RA (2010) Chemical approaches to glycobiology. Annu Rev Biochem 79:619–53PubMedCrossRefGoogle Scholar
  5. 5.
    Lepenies B, Yin J, Seeberger PH (2010) Applications of synthetic carbohydrates to chemical biology. Curr Opin Chem Biol 14(3):404–11PubMedCrossRefGoogle Scholar
  6. 6.
    Weijers CA, Franssen MC, Visser GM (2008) Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides. Biotechnol Adv 26(5):436–56PubMedCrossRefGoogle Scholar
  7. 7.
    Angenendt P, Glökler J, Murphy D, Lehrach H, Cahill DJ (2002) Toward optimized antibody microarrays: a comparison of current microarray support materials. Anal Biochem 309(2):253–60PubMedCrossRefGoogle Scholar
  8. 8.
    Livache T, Guedon P, Brakha C, Roget A, Levy Y and Bidan G (2001) Polypyrrole electrospotting for the construction of oligonucleotide arrays compatible with a surface plasmon ­resonance hybridization detection. Synth. Met 121 (2–3):1443–1444CrossRefGoogle Scholar
  9. 9.
    Sarrazin S, Bonnaffé D, Lubineau A, Lortat-Jacob H (2005) Heparan sulfate mimicry: a synthetic glycoconjugate that recognizes the heparin binding domain of interferon-gamma inhibits the cytokine activity. J Biol. Chem 280:37558–64PubMedCrossRefGoogle Scholar
  10. 10.
    Laguri C, Sadir R, Rueda P, Baleux F, Gans P, Arenzana-Seisdedos F and Lortat-Jacob H (2007) The novel CXCL12γ isoform encodes an unstructured cationic domain which regulates bioactivity and interaction with both glycosaminoglycans and CXCR4. PLoS One 2, e1110PubMedCrossRefGoogle Scholar
  11. 11.
    Jirkowski I. and Baudy R (1981) A facile large scale preparation of 1H-pyrrole-1-ethanamine and syntheses of substituted pyrrolo[1,2-a]pyrazines and hydro derivatives thereof. Synthesis 481–483Google Scholar
  12. 12.
    Emiliano Gemma, Odile Meyer, Dušan Uhrín and Alison N. Hulme (2008) Enabling methodology for the end functionalisation of glycosaminoglycan oligosaccharides. Mol. BioSyst 4:481–95PubMedCrossRefGoogle Scholar
  13. 13.
    Guedon P, Livache T, Martin F, Lesbre F, Roget A, Bidan G, Levy Y (2000) Characterization and optimization of a real-time, parallel, label-free, polypyrrole-based DNA sensor by surface plasmon resonance imaging. Anal Chem 72:6003–9PubMedCrossRefGoogle Scholar
  14. 14.
    Capila I, Linhardt RJ (2002) Heparin-protein interactions. Angew Chem Int Ed Engl 41:391–412PubMedCrossRefGoogle Scholar
  15. 15.
    Mercey E, Sadir R, Maillart E, Roget A, Baleux F, Lortat-Jacob H, Livache T (2008) Polypyrrole Oligosaccharide Array and Surface Plasmon Resonance Imaging for the Measurement of Glycosaminoglycan Binding Interactions. Anal Chem 80:3476–82PubMedCrossRefGoogle Scholar
  16. 16.
    Sadir R, Baleux F, Grosdidier A, Imberty A, Lortat-Jacob H (2001) Characterization of the stromal cell-derived factor-1alpha-heparin complex. J Biol Chem 276:8288–96PubMedCrossRefGoogle Scholar
  17. 17.
    Sadir R, Forest E, Lortat-Jacob H (1998) The heparan sulfate binding sequence of interferon-gamma increased the on rate of the interferon-gamma-interferon-gamma receptor complex formation. J Biol Chem 273:10919–25PubMedCrossRefGoogle Scholar
  18. 18.
    Lortat-Jacob H, Brisson C, Guerret S, Morel G (1996) Non-receptor-mediated tissue localization of human interferon-gamma: role of heparan sulfate/heparin-like molecules. Cytokine 8:557–66PubMedCrossRefGoogle Scholar
  19. 19.
    Lortat-Jacob H, Turnbull JE, Grimaud JA (1995) Molecular organization of the interferon-gamma-binding domain in heparan sulfate. Biochem J 310:497–505PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.UMR 5075 (CEA, CNRS, UJF)Institut de Biologie StructuraleGrenobleFrance
  2. 2.CREAB, UMR SPRAM 5819 (CEA, CNRS, UJF)INAC CEA GrenobleGrenobleFrance

Personalised recommendations