Synthesis of Azido-Functionalized Carbohydrates for the Design of Glycoconjugates

  • Samy Cecioni
  • David Goyard
  • Jean-Pierre Praly
  • Sébastien Vidal
Part of the Methods in Molecular Biology book series (MIMB, volume 808)


As carbohydrates play a major role in numerous biological processes through their interactions with lectins and also appear as one of the most crucial post-translational modifications of proteins, chemists have developed several approaches for the design of glycoconjugates based on a series of conjugation methodologies. The recent development of copper(I)-catalyzed azide-alkyne cycloaddition (CuACC) paved the way to a novel conjugation strategy in which azido-functionalized carbohydrate derivatives can be readily connected to alkyne-functionalized (bio)molecules. This so-called “click chemistry” methodology has now found numerous applications both in chemistry and biology. The azido moiety can be introduced either directly at the anomeric carbon of the carbohydrate derivative, or attached to a spacer arm. We describe here the syntheses of 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl azide as well as 1-azido-3,6-dioxaoct-8-yl 2,3,4,6-tetra-O-acetyl-β-d-galactopyranoside and 1-azido-3,6-dioxaoct-8-yl 2,3,6,2′,3′,4′,6′-hepta-O-acetyl-β-d-lactoside. These molecules can then be used in the construction of glycoconjugates to find applications in chemical biology.

Key words

Carbohydrates Click chemistry 1,3-Dipolar cycloaddition Azide Alkyne Glycoconju­gates Glycosylation Triazole 


  1. 1.
    Dwek, R. A. (1996) Glycobiology: Toward Understanding the Function of Sugars. Chem. Rev. 96, 683–720.PubMedCrossRefGoogle Scholar
  2. 2.
    Varki, A., Cummings, R., Esko, J., Freeze, H., Hart, G. W., and Marth, J. Essentials of glycobiology, Cold Spring Harbor Laboratory Press: New York, 1999.Google Scholar
  3. 3.
    Flitsch, S. L. (2000) Chemical and enzymatic synthesis of glycopolymers. Curr. Opin. Chem. Biol. 4, 619–625.PubMedCrossRefGoogle Scholar
  4. 4.
    Cloninger, M. J. (2002) Biological applications of dendrimers. Curr. Opin. Chem. Biol. 6, 742–748.PubMedCrossRefGoogle Scholar
  5. 5.
    de la Fuente, J. M., and Penadés, S. (2006) Glyconanoparticles: Types, synthesis and applications in glycoscience, biomedicine and material science. Biochim. Biophys. Acta. 1760, 636–651.PubMedGoogle Scholar
  6. 6.
    Imberty, A., Chabre, Y. M., and Roy, R. (2008) Glycomimetics and Glycodendrimers as High Affinity Microbial Anti-adhesins. Chem. Eur. J. 14, 7490–7499.CrossRefGoogle Scholar
  7. 7.
    Chabre, Y. M., and Roy, R. R. (2010) Design and Creativity in Synthesis of Multivalent Neoglycoconjugates. Adv. Carbohydr. Chem. Biochem. 63, 165–393.PubMedCrossRefGoogle Scholar
  8. 8.
    Mammen, M., Choi, S.-K., and Whitesides, G. M. (1998) Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. Angew. Chem. Int. Ed. 37, 2754–2794.CrossRefGoogle Scholar
  9. 9.
    Lundquist, J. J., and Toone, E. J. (2002) The Cluster Glycoside Effect. Chem. Rev. 102, 555–578.PubMedCrossRefGoogle Scholar
  10. 10.
    Rostovtsev, V. V., Green, L. G., Fokin, V. V., and Sharpless, K. B. (2002) A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem. Int. Ed. 41, 2596–2599.CrossRefGoogle Scholar
  11. 11.
    Tornøe, C.W., Christensen, C. and Meldal, M. (2002) Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem. 67, 3057–3064.PubMedCrossRefGoogle Scholar
  12. 12.
    Meldal, M., and Tornøe, C. W. (2008) Cu-Catalyzed Azide-Alkyne Cycloaddition. Chem. Rev. 108, 2952–3015.PubMedCrossRefGoogle Scholar
  13. 13.
    Dondoni, A. (2007) Triazole: the Keystone in Glycosylated Molecular Architectures Cons­tructed by a Click Reaction. Chem. Asian J. 2, 700–708.PubMedCrossRefGoogle Scholar
  14. 14.
    Wolfrom, M. L., and Thompson, A. (1963) in Methods in Carbohydrate Chemistry, Academic Press: New York, vol. 2, pp. 211–215.Google Scholar
  15. 15.
    Westerlind, U., Hagback, P., Tidbäck, B., Wiik, L., Blixt, O., Razib, N., and Norberg, T. (2005) Synthesis of deoxy and acylamino derivatives of lactose and use of these for probing the active site of Neisseria meningitidis N-acetylglucosaminyltransferase. Carbohydr. Res. 340, 221–233.PubMedCrossRefGoogle Scholar
  16. 16.
    Praly, J.-P., Péquery, F., Di Stefano, C., and Descotes, G. (1996) Synthesis of protected glycopyranosylidene 1,1-diazides. Synthesis, 577–579.Google Scholar
  17. 17.
    Tropper, F. D., Anderson, F. O., Braun, S., and Roy, R. R. (1992) Phase Transfer Catalysis as a General and Stereoselective Entry into Glycosyl Azides from Glycosyl Halides. Synthesis, 618–620.Google Scholar
  18. 18.
    Fugedi, P. Glycosylation methods In The organic chemistry of carbohydrates. Levy, D. E., and Fugedi, P. Eds, CRC Taylor and Francis: New York, 2006, Chapter 4, pp. 89–151.Google Scholar
  19. 19.
    Xue, J. L., Cecioni, S., He, L., Vidal, S., and Praly, J.-P. (2009) Variations on the SnCl4 and CF3CO2Ag-promoted glycosidation of sugar acetates: a direct, versatile and apparently simple method with either α or β stereocontrol. Carbohydr. Res. 344, 1646–1653.PubMedCrossRefGoogle Scholar
  20. 20.
    Szurmai, Z., Szabo, L., and Liptak, A. (1989) Diethylene and triethylene glycol spacers for the preparation of neoglycoproteins. Acta Chim. Hung. 126, 259–269.Google Scholar
  21. 21.
    Chevolot, Y., Bouillon, C., Vidal, S., Morvan, F., Meyer, A., Cloarec, J.-P., et al. (2007) DNA-Based Carbohydrate Biochips: A Platform for Surface Glyco-Engineering. Angew. Chem. Int. Ed. 46, 2398–2402.CrossRefGoogle Scholar
  22. 22.
    Cecioni, S., Lalor, R., Blanchard, B., Praly, J.-P., Imberty, A., Matthews, S.E., and Vidal, S. (2009) Achieving High Affinity towards a Bacterial Lectin through Multivalent Topological Isomers of Calix[4]arene Glycoconjugates. Chem. Eur. J. 15, 13232–13240.CrossRefGoogle Scholar
  23. 23.
    Li, J., Zacharek, S., Chen, X., Wang, J., Zhang, W., Janczuk, A., and Wang, P. G. (1999) Bacteria targeted by human natural antibodies using α-gal conjugated receptor-specific glycopolymers. Bioorg. Med. Chem. 7, 1549–1558.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Samy Cecioni
    • 1
  • David Goyard
    • 1
  • Jean-Pierre Praly
    • 1
  • Sébastien Vidal
    • 1
  1. 1.Laboratoire de Chimie Organique 2, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Glycochimie, UMR5246, CNRSUniversité Lyon 1VilleurbanneFrance

Personalised recommendations