Adeno-Associated Virus pp 219-237

Part of the Methods in Molecular Biology book series (MIMB, volume 807)

Adeno-Associated Virus Vector Delivery to the Heart

  • Lawrence T. Bish
  • H. Lee Sweeney
  • Oliver J. Müller
  • Raffi Bekeredjian
Protocol

Abstract

Cardiac gene transfer may serve as a novel therapeutic approach in the treatment of heart disease. For it to reach its full potential, methods for highly efficient cardiac gene transfer must be available to investigators so that informative preclinical data can be collected and evaluated. We have recently optimized AAV-mediated cardiac gene transfer protocols in both the mouse and rat. In the mouse, we have developed a procedure for intrapericardial delivery of vector in the neonate and successfully applied intravenous injections in adult animals. In the rat, we have developed a procedure for direct injection of vector into the myocardium in adults and established a protocol for vector delivery into the left ventricular anterior wall by ultrasound-targeted destruction of microbubbles loaded with AAV. Each protocol can be used to achieve safe and efficient cardiac gene transfer in the model of choice.

Key words

Heart Gene therapy Adeno-associated virus AAV Animal model Microbubbles Ultrasound 

References

  1. 1.
    Kaye, D. M., Hoshijima, M., and Chien, K. R. (2008) Reversing advanced heart failure by targeting Ca2+ cycling, Annu Rev Med 59, 13–28.PubMedCrossRefGoogle Scholar
  2. 2.
    Lyon, A. R., Sato, M., Hajjar, R. J., Samulski, R. J., and Harding, S. E. (2008) Gene therapy: targeting the myocardium, Heart 94, 89–99.PubMedCrossRefGoogle Scholar
  3. 3.
    Vinge, L. E., Raake, P. W., and Koch, W. J. (2008) Gene therapy in heart failure, Circ Res 102, 1458–1470.PubMedCrossRefGoogle Scholar
  4. 4.
    Hoshijima, M., Ikeda, Y., Iwanaga, Y., Minamisawa, S., Date, M. O., Gu, Y., Iwatate, M., Li, M., Wang, L., Wilson, J. M., Wang, Y., Ross, J., Jr., and Chien, K. R. (2002) Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery, Nat Med 8, 864–871.PubMedGoogle Scholar
  5. 5.
    Iwanaga, Y., Hoshijima, M., Gu, Y., Iwatate, M., Dieterle, T., Ikeda, Y., Date, M. O., Chrast, J., Matsuzaki, M., Peterson, K. L., Chien, K. R., and Ross, J., Jr. (2004) Chronic phospholamban inhibition prevents progressive cardiac dysfunction and pathological remodeling after infarction in rats, J Clin Invest 113, 727–736.PubMedGoogle Scholar
  6. 6.
    Kaye, D. M., Preovolos, A., Marshall, T., Byrne, M., Hoshijima, M., Hajjar, R., Mariani, J. A., Pepe, S., Chien, K. R., and Power, J. M. (2007) Percutaneous cardiac recirculation-mediated gene transfer of an inhibitory phospholamban peptide reverses advanced heart failure in large animals, J Am Coll Cardiol 50, 253–260.PubMedCrossRefGoogle Scholar
  7. 7.
    Sakata, S., Lebeche, D., Sakata, N., Sakata, Y., Chemaly, E. R., Liang, L. F., Tsuji, T., Takewa, Y., del Monte, F., Peluso, R., Zsebo, K., Jeong, D., Park, W. J., Kawase, Y., and Hajjar, R. J. (2007) Restoration of mechanical and energetic function in failing aortic-banded rat hearts by gene transfer of calcium cycling proteins, J Mol Cell Cardiol 42, 852–861.PubMedCrossRefGoogle Scholar
  8. 8.
    Kawase, Y., Ly, H. Q., Prunier, F., Lebeche, D., Shi, Y., Jin, H., Hadri, L., Yoneyama, R., Hoshino, K., Takewa, Y., Sakata, S., Peluso, R., Zsebo, K., Gwathmey, J. K., Tardif, J. C., Tanguay, J. F., and Hajjar, R. J. (2008) Reversal of cardiac dysfunction after long-term expression of SERCA2a by gene transfer in a pre-­clinical model of heart failure, J Am Coll Cardiol 51, 1112–1119.PubMedCrossRefGoogle Scholar
  9. 9.
    Pleger, S. T., Most, P., Boucher, M., Soltys, S., Chuprun, J. K., Pleger, W., Gao, E., Dasgupta, A., Rengo, G., Remppis, A., Katus, H. A., Eckhart, A. D., Rabinowitz, J. E., and Koch, W. J. (2007) Stable myocardial-specific AAV6-S100A1 gene therapy results in chronic functional heart failure rescue, Circulation 115, 2506–2515.PubMedCrossRefGoogle Scholar
  10. 10.
    Dandapat, A., Hu, C. P., Li, D., Liu, Y., Chen, H., Hermonat, P. L., and Mehta, J. L. (2008) Overexpression of TGFbeta1 by adeno-­associated virus type-2 vector protects myocardium from ischemia-reperfusion injury, Gene Ther 15, 415–423.PubMedCrossRefGoogle Scholar
  11. 11.
    Melo, L. G., Agrawal, R., Zhang, L., Rezvani, M., Mangi, A. A., Ehsan, A., Griese, D. P., Dell’Acqua, G., Mann, M. J., Oyama, J., Yet, S. F., Layne, M. D., Perrella, M. A., and Dzau, V. J. (2002) Gene therapy strategy for long-term myocardial protection using adeno-associated virus-mediated delivery of heme oxygenase gene, Circulation 105, 602–607.PubMedCrossRefGoogle Scholar
  12. 12.
    Pachori, A. S., Melo, L. G., Zhang, L., Solomon, S. D., and Dzau, V. J. (2006) Chronic recurrent myocardial ischemic injury is significantly attenuated by pre-emptive adeno-associated virus heme oxygenase-1 gene delivery, J Am Coll Cardiol 47, 635–643.PubMedCrossRefGoogle Scholar
  13. 13.
    Su, H., Lu, R., and Kan, Y. W. (2000) Adeno-associated viral vector-mediated vascular endothelial growth factor gene transfer induces neovascular formation in ischemic heart, Proc Natl Acad Sci U S A 97, 13801–13806.PubMedCrossRefGoogle Scholar
  14. 14.
    Su, H., Takagawa, J., Huang, Y., Arakawa-Hoyt, J., Pons, J., Grossman, W., and Kan, Y. W. (2009) Additive effect of AAV-mediated angiopoietin-1 and VEGF expression on the therapy of infarcted heart, Int J Cardiol 133, 191–197.PubMedCrossRefGoogle Scholar
  15. 15.
    Dobrucki, L. W., Tsutsumi, Y., Kalinowski, L., Dean, J., Gavin, M., Sen, S., Mendizabal, M., Sinusas, A. J., and Aikawa, R. (2009) Analysis of angiogenesis induced by local IGF-1 expression after myocardial infarction using microSPECT-CT imaging, J Mol Cell Cardiol.Google Scholar
  16. 16.
    Bostick, B., Yue, Y., Lai, Y., Long, C., Li, D., and Dongsheng, D. (2008) AAV-9 micro-dystrophin gene therapy ameliorates electrocardiographic abnormalities in mdx mice, Hum Gene Ther.Google Scholar
  17. 17.
    Goehringer, C., Rutschow, D., Bauer, R., Schinkel, S., Weichenhan, D., Bekeredjian, R., Straub, V., Kleinschmidt, J. A., Katus, H. A., and Muller, O. J. (2009) Prevention of cardiomyopathy in delta-sarcoglycan knockout mice after systemic transfer of targeted adeno-associated viral vectors, Cardiovasc Res 82, 404–410.PubMedCrossRefGoogle Scholar
  18. 18.
    Ogawa, K., Hirai, Y., Ishizaki, M., Takahashi, H., Hanawa, H., Fukunaga, Y., and Shimada, T. (2009) Long-term inhibition of glycosphingolipid accumulation in Fabry model mice by a single systemic injection of AAV1 vector in the neonatal period, Mol Genet Metab 96, 91–96.PubMedCrossRefGoogle Scholar
  19. 19.
    Sun, B., Young, S. P., Li, P., Di, C., Brown, T., Salva, M. Z., Li, S., Bird, A., Yan, Z., Auten, R., Hauschka, S. D., and Koeberl, D. D. (2008) Correction of multiple striated muscles in murine Pompe disease through adeno-­associated virus-mediated gene therapy, Mol Ther 16, 1366–1371.PubMedCrossRefGoogle Scholar
  20. 20.
    Merritt, J. L., 2nd, Nguyen, T., Daniels, J., Matern, D., and Schowalter, D. B. (2009) Biochemical correction of very long-chain acyl-CoA dehydrogenase deficiency following adeno-associated virus gene therapy, Mol Ther 17, 425–429.PubMedCrossRefGoogle Scholar
  21. 21.
    Palomeque, J., Chemaly, E. R., Colosi, P., Wellman, J. A., Zhou, S., Del Monte, F., and Hajjar, R. J. (2007) Efficiency of eight different AAV serotypes in transducing rat myocardium in vivo, Gene Ther 14, 989–997.PubMedCrossRefGoogle Scholar
  22. 22.
    Inagaki, K., Fuess, S., Storm, T. A., Gibson, G. A., McTiernan, C. F., Kay, M. A., and Nakai, H. (2006) Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8, Mol Ther 14, 45–53.PubMedCrossRefGoogle Scholar
  23. 23.
    Pacak, C. A., Mah, C. S., Thattaliyath, B. D., Conlon, T. J., Lewis, M. A., Cloutier, D. E., Zolotukhin, I., Tarantal, A. F., and Byrne, B. J. (2006) Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo, Circ Res 99, e3-9.PubMedCrossRefGoogle Scholar
  24. 24.
    Bostick, B., Ghosh, A., Yue, Y., Long, C., and Duan, D. (2007) Systemic AAV-9 transduction in mice is influenced by animal age but not by the route of administration, Gene Ther 14, 1605–1609.PubMedCrossRefGoogle Scholar
  25. 25.
    Zincarelli, C., Soltys, S., Rengo, G., and Rabinowitz, J. E. (2008) Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection, Mol Ther 16, 1073–1080.PubMedCrossRefGoogle Scholar
  26. 26.
    Katz, M. G., Swain, J. D., Low, D., White, J. D., Stedman, H. H., and Bridges, C. R. (2009) Cardiac Gene Therapy: Optimization of Gene Delivery Techniques in Vivo, Hum Gene Ther.Google Scholar
  27. 27.
    Bish, L. T., Sleeper, M.M., Sweeney, H.L. (2011) Percutaneous transendocardial delivery of self-complementary adeno-associated virus 6 in the canine, Methods Mol Biol 709, 369–78.Google Scholar
  28. 28.
    Raake, P. W., Hinkel, R., Muller, S., Delker, S., Kreuzpointner, R., Kupatt, C., Katus, H. A., Kleinschmidt, J. A., Boekstegers, P., and Muller, O. J. (2008) Cardio-specific long-term gene expression in a porcine model after selective pressure-regulated retroinfusion of adeno-associated viral (AAV) vectors, Gene Ther 15, 12–17.PubMedCrossRefGoogle Scholar
  29. 29.
    Vandendriessche, T., Thorrez, L., Acosta-Sanchez, A., Petrus, I., Wang, L., Ma, L., L, D. E. W., Iwasaki, Y., Gillijns, V., Wilson, J. M., Collen, D., and Chuah, M. K. (2007) Efficacy and safety of adeno-associated viral vectors based on serotype 8 and 9 vs. lentiviral vectors for hemophilia B gene therapy, J Thromb Haemost 5, 16–24.Google Scholar
  30. 30.
    Bish, L. T., Morine, K., Sleeper, M. M., Sanmiguel, J., Wu, D., Gao, G., Wilson, J. M., and Sweeney, H. L. (2008) Adeno-associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat, Hum Gene Ther 19, 1359–1368.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhang, J. C., Woo, Y. J., Chen, J. A., Swain, J. L., and Sweeney, H. L. (1999) Efficient transmural cardiac gene transfer by intrapericardial injection in neonatal mice, J Mol Cell Cardiol 31, 721–732.PubMedCrossRefGoogle Scholar
  32. 32.
    Andino, L. M., Takeda, M., Kasahara, H., Jakymiw, A., Byrne, B. J., and Lewin, A. S. (2008) AAV-mediated knockdown of phospholamban leads to improved contractility and ­calcium handling in cardiomyocytes, J Gene Med 10, 132–142.PubMedCrossRefGoogle Scholar
  33. 33.
    Yue, Y., Li, Z., Harper, S. Q., Davisson, R. L., Chamberlain, J. S., and Duan, D. (2003) Microdystrophin gene therapy of cardiomyopathy restores dystrophin-glycoprotein ­complex and improves sarcolemma integrity in the mdx mouse heart, Circulation 108, 1626–1632.PubMedCrossRefGoogle Scholar
  34. 34.
    Muller, O. J., Leuchs, B., Pleger, S. T., Grimm, D., Franz, W. M., Katus, H. A., and Kleinschmidt, J. A. (2006) Improved cardiac gene transfer by transcriptional and transductional targeting of adeno-associated viral vectors, Cardiovasc Res 70, 70–78.PubMedCrossRefGoogle Scholar
  35. 35.
    Shohet, R. V., Chen, S., Zhou, Y. T., Wang, Z., Meidell, R. S., Unger, R. H., and Grayburn, P. A. (2000) Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium, Circulation 101, 2554–2556.PubMedGoogle Scholar
  36. 36.
    Bekeredjian, R., Chen, S., Frenkel, P. A., Grayburn, P. A., and Shohet, R. V. (2003) Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart, Circulation 108, 1022–1026.PubMedCrossRefGoogle Scholar
  37. 37.
    Chen, S., Shohet, R. V., Bekeredjian, R., Frenkel, P., and Grayburn, P. A. (2003) Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction, J Am Coll Cardiol 42, 301–308.PubMedCrossRefGoogle Scholar
  38. 38.
    Muller, O. J., Schinkel, S., Kleinschmidt, J. A., Katus, H. A., and Bekeredjian, R. (2008) Augmentation of AAV-mediated cardiac gene transfer after systemic administration in adult rats, Gene Ther 15, 1558–1565.PubMedCrossRefGoogle Scholar
  39. 39.
    Bekeredjian, R., Kroll, R. D., Fein, E., Tinkov, S., Coester, C., Winter, G., Katus, H. A., and Kulaksiz, H. (2007) Ultrasound targeted microbubble destruction increases capillary permeability in hepatomas, Ultrasound Med Biol 33, 1592–1598.PubMedCrossRefGoogle Scholar
  40. 40.
    Geis, N. A., Mayer, C. R., Kroll, R. D., Hardt, S. E., Katus, H. A., and Bekeredjian, R. (2009) Spatial distribution of ultrasound targeted microbubble destruction increases cardiac transgene expression but not capillary permeability, Ultrasound Med Biol 35, 1119–1126.PubMedCrossRefGoogle Scholar
  41. 41.
    Matsuda, T., Fukuo, Y., Shinohara, H., Morisawa, S., and Nakatani, T. (1990) The postnatal development of the mouse pericardium; the time and mechanism of formation of pericardial pores, Okajimas Folia Anat Jpn 67, 115–120.PubMedGoogle Scholar
  42. 42.
    Nakatani, T., Shinohara, H., Fukuo, Y., Morisawa, S., and Matsuda, T. (1988) Pericardium of rodents: pores connect the pericardial and pleural cavities, Anat Rec 220, 132–137.PubMedCrossRefGoogle Scholar
  43. 43.
    Liu, Y. H., Yang, X. P., Nass, O., Sabbah, H. N., Peterson, E., and Carretero, O. A. (1997) Chronic heart failure induced by coronary artery ligation in Lewis inbred rats, Am J Physiol 272, H722–727.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Lawrence T. Bish
    • 1
  • H. Lee Sweeney
    • 1
  • Oliver J. Müller
    • 2
  • Raffi Bekeredjian
    • 2
  1. 1.Department of PhysiologyUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  2. 2.Internal MedicineUniversity of HeidelbergHeidelbergGermany

Personalised recommendations