Advertisement

AAV Capsid Structure and Cell Interactions

  • Mavis Agbandje-McKenna
  • Jürgen Kleinschmidt
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 807)

Abstract

The Adeno-associated viruses (AAVs) are not associated with any diseases, and their ability to package non-genomic DNA and to transduce different cell/tissue populations has generated significant interest in understanding their basic biology in efforts to improve their utilization for corrective gene delivery. This includes their capsid structure, cellular tropism and interactions for entry, uncoating, replication, DNA packaging, capsid assembly, and antibody neutralization. The human and nonhuman primate AAVs are clustered into serologically distinct genetic clade and serotype groups, which have distinct cellular/tissue tropisms and transduction efficiencies. These properties are highly dependent upon the AAV capsid amino acid sequence, their capsid structure, and their interactions with host cell factors, including cell surface receptors, co-receptors, signaling molecules, proteins involved in host DNA replication, and host-derived antibodies. This chapter reviews the current structural information on AAV capsids and the capsid viral protein regions playing a role in the cellular interactions conferring an infective phenotype, which are then used to annotate the functional regions of the capsid. Based on the current data, the indication is that the AAVs, like other members of the Parvoviridae and other ssDNA viruses that form a T = 1 capsid, have evolved a multifunctional capsid with conserved core regions as is required for efficient capsid trafficking, capsid assembly, and genome packaging. Disparate surface loop structures confer differential receptor recognition and are involved in antibody recognition. The role of structural regions in capsid uncoating remains to be elucidated.

Key words

AAV capsid structure Glycan receptor recognition Internalization Endosomal trafficking Uncoating Genome replication Capsid assembly Antibody response 

Notes

Acknowledgments

The authors would like to thank Lakshmanan Govindasamy and Brittney L. Gurda for help in generating Figures 15, Antonette Bennett for providing information on baculovirus expression of AAV VLPs, and Britta Gerlach and Bettina Böttcher for providing unpublished data. NIH project R01 GM082946 to MA-M is also acknowledged for support.

References

  1. 1.
    Gao, G., Vandenberghe, L. H., Alvira, M. R., Lu, Y., Calcedo, R., Zhou, X., and Wilson, J. M. (2004) Clades of Adeno-associated viruses are widely disseminated in human tissues, J Virol 78, 6381–6388.PubMedCrossRefGoogle Scholar
  2. 2.
    Gao, G. P., Alvira, M. R., Wang, L., Calcedo, R., Johnston, J., and Wilson, J. M. (2002) Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy, Proc Natl Acad Sci USA 99, 11854–11859.PubMedCrossRefGoogle Scholar
  3. 3.
    Mori, S., Wang, L., Takeuchi, T., and Kanda, T. (2004) Two novel adeno-associated viruses from cynomolgus monkey: pseudotyping characterization of capsid protein, Virology 330, 375–383.PubMedCrossRefGoogle Scholar
  4. 4.
    Schmidt, M., Govindasamy, L., Afione, S., Kaludov, N., Agbandje-McKenna, M., and Chiorini, J. A. (2008) Molecular characterization of the heparin-dependent transduction domain on the capsid of a novel adeno-associated virus isolate, AAV(VR-942), J Virol 82, 8911–8916.PubMedCrossRefGoogle Scholar
  5. 5.
    Schmidt, M., Voutetakis, A., Afione, S., Zheng, C., Mandikian, D., and Chiorini, J. A. (2008) Adeno-associated virus type 12 (AAV12): a novel AAV serotype with sialic acid- and heparan sulfate proteoglycan-independent transduction activity, J Virol 82, 1399–1406.PubMedCrossRefGoogle Scholar
  6. 6.
    Chapman, M. S., and Agbandje-McKenna, M. (2006) Atomic structure if viral particles., in Parvoviruses (Kerr, J. R., Cotmore, S. F., Bloom, M. E., Linden, R. M., and Parrish, C. R., Eds.), pp 107–123, Edward Aenold Ltd. New York, New York.Google Scholar
  7. 7.
    McLaughlin, S. K., Collis, P., Hermonat, P. L., and Muzyczka, N. (1988) Adeno-associated virus general transduction vectors: analysis of proviral structures, J Virol 62, 1963–1973.PubMedGoogle Scholar
  8. 8.
    Samulski, R. J., Srivastava, A., Berns, K. I., and Muzyczka, N. (1983) Rescue of adeno-associated virus from recombinant plasmids: gene correction within the terminal repeats of AAV, Cell 33, 135–143.PubMedCrossRefGoogle Scholar
  9. 9.
    Senapathy, P., Tratschin, J. D., and Carter, B. J. (1984) Replication of adeno-associated virus DNA. Complementation of naturally occurring rep-mutants by a wild-type genome or an ori-mutant and correction of terminal palindrome deletions, J Mol Biol 179, 1–20.PubMedGoogle Scholar
  10. 10.
    Samulski, R. J., Chang, L.-S., and Shenk, T. (1987) A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication, J Virol 61, 3096–3101.PubMedGoogle Scholar
  11. 11.
    Hermonat, P. L., and Muzyczka, N. (1984) Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells, Proc Natl Acad Sci USA 81, 6466–6470.PubMedCrossRefGoogle Scholar
  12. 12.
    Samulski, R. J., Sally, M., and Muzyczka, N. (1988) Adeno-associated viral vectors., in Cold Spring Harbor, Cold Spring Harbor Laboraory Press, NY., Cold Spring Harbor.Google Scholar
  13. 13.
    Hauck, B., Chen, L., and Xiao, W. (2003) Generation and characterization of chimeric recombinant AAV vectors, Mol Ther 7, 419–425.PubMedCrossRefGoogle Scholar
  14. 14.
    Hauck, B., and Xiao, W. (2003) Characterization of tissue tropism determinants of adeno-associated virus type 1, J Virol 77, 2768–2774.PubMedCrossRefGoogle Scholar
  15. 15.
    Hildinger, M., Auricchio, A., Gao, G., Wang, L., Chirmule, N., and Wilson, J. M. (2001) Hybrid vectors based on adeno-associated virus serotypes 2 and 5 for muscle-directed gene transfer, J Virol 75, 6199–6203.PubMedCrossRefGoogle Scholar
  16. 16.
    Rabinowitz, J. E., Rolling, F., Li, C., Conrath, H., Xiao, W., Xiao, X., and Samulski, R. J. (2002) Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity, J Virol 76, 791–801.PubMedCrossRefGoogle Scholar
  17. 17.
    Rabinowitz, J. E., Bowles, D. E., Faust, S. M., Ledford, J. G., Cunningham, S. E., and Samulski, R. J. (2004) Cross-dressing the virion: the transcapsidation of adeno-associated virus serotypes functionally defines subgroups, J Virol 78, 4421–4432.PubMedCrossRefGoogle Scholar
  18. 18.
    DiMattia, M., Govindasamy, L., Levy, H. C., Gurda-Whitaker, B., Kalina, A., Kohlbrenner, E., Chiorini, J. A., McKenna, R., Muzyczka, N., Zolotukhin, S., and Agbandje-McKenna, M. (2005) Production, purification, crystallization and preliminary X-ray structural studies of adeno-associated virus serotype 5, Acta Crystallogr Sect F Struct Biol Cryst Commun 61, 917–921.PubMedCrossRefGoogle Scholar
  19. 19.
    Kaludov, N., Padron, E., Govindasamy, L., McKenna, R., Chiorini, J. A., and Agbandje-McKenna, M. (2003) Production, purification and preliminary X-ray crystallographic studies of adeno-associated virus serotype 4, Virology 306, 1–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Mitchell, M., Nam, H. J., Carter, A., McCall, A., Rence, C., Bennett, A., Gurda, B., McKenna, R., Porter, M., Sakai, Y., Byrne, B. J., Muzyczka, N., Aslanidi, G., Zolotukhin, S., and Agbandje-McKenna, M. (2009) Production, purification and preliminary X-ray crystallographic studies of adeno-associated virus serotype 9, Acta Crystallogr Sect F Struct Biol Cryst Commun 65, 715–718.PubMedCrossRefGoogle Scholar
  21. 21.
    Miller, E. B., Gurda-Whitaker, B., Govindasamy, L., McKenna, R., Zolotukhin, S., Muzyczka, N., and Agbandje-McKenna, M. (2006) Production, purification and preliminary X-ray crystallographic studies of adeno-associated virus serotype 1, Acta Crystallogr Sect F Struct Biol Cryst Commun 62, 1271–1274.PubMedCrossRefGoogle Scholar
  22. 22.
    Quesada, O., Gurda, B., Govindasamy, L., McKenna, R., Kohlbrenner, E., Aslanidi, G., Zolotukhin, S., Muzyczka, N., and Agbandje-McKenna, M. (2007) Production, purification and preliminary X-ray crystallographic studies of adeno-associated virus serotype 7, Acta Crystallogr Sect F Struct Biol Cryst Commun 63, 1073–1076.PubMedCrossRefGoogle Scholar
  23. 23.
    Lane, M. D., Nam, H. J., Padron, E., Gurda-Whitaker, B., Kohlbrenner, E., Aslanidi, G., Byrne, B., McKenna, R., Muzyczka, N., Zolotukhin, S., and Agbandje-McKenna, M. (2005) Production, purification, crystallization and preliminary X-ray analysis of adeno-associated virus serotype 8, Acta Crystallogr Sect F Struct Biol Cryst Commun 61, 558–561.PubMedCrossRefGoogle Scholar
  24. 24.
    Govindasamy, L., Padron, E., McKenna, R., Muzyczka, N., Kaludov, N., Chiorini, J. A., and Agbandje-McKenna, M. (2006) Structurally mapping the diverse phenotype of adeno-associated virus serotype 4, J Virol 80, 11556–11570.PubMedCrossRefGoogle Scholar
  25. 25.
    Nam, H. J., Lane, M. D., Padron, E., Gurda, B., McKenna, R., Kohlbrenner, E., Aslanidi, G., Byrne, B., Muzyczka, N., Zolotukhin, S., and Agbandje-McKenna, M. (2007) Structure of adeno-associated virus serotype 8, a gene therapy vector, J Virol 81, 12260–12271.PubMedCrossRefGoogle Scholar
  26. 26.
    Xie, Q., Bu, W., Bhatia, S., Hare, J., Somasundaram, T., Azzi, A., and Chapman, M. S. (2002) The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy, Proc Natl Acad Sci U S A 99, 10405–10410.PubMedCrossRefGoogle Scholar
  27. 27.
    O’Donnell, J., Taylor, K. A., and Chapman, M. S. (2009) Adeno-associated virus-2 and its primary cellular receptor – Cryo-EM structure of a heparin complex, Virology 385, 434–443.PubMedCrossRefGoogle Scholar
  28. 28.
    Lerch, T. F., Xie, Q., Ongley, H. M., Hare, J., and Chapman, M. S. (2009) Twinned crystals of adeno-associated virus serotype 3b prove suitable for structural studies, Acta Crystallogr Sect F Struct Biol Cryst Commun 65, 177–183.PubMedCrossRefGoogle Scholar
  29. 29.
    Xie, Q., Ongley, H. M., Hare, J., and Chapman, M. S. (2008) Crystallization and preliminary X-ray structural studies of adeno-associated virus serotype 6, Acta Crystallogr Sect F Struct Biol Cryst Commun 64, 1074–1078.PubMedCrossRefGoogle Scholar
  30. 30.
    Padron, E., Bowman, V., Kaludov, N., Govindasamy, L., Levy, H., Nick, P., McKenna, R., Muzyczka, N., Chiorini, J. A., Baker, T. S., and Agbandje-McKenna, M. (2005) Structure of adeno-associated virus type 4, J Virol 79, 5047–5058.PubMedCrossRefGoogle Scholar
  31. 31.
    Walters, R. W., Agbandje-McKenna, M., Bowman, V. D., Moninger, T. O., Olson, N. H., Seiler, M., Chiorini, J. A., Baker, T. S., and Zabner, J. (2004) Structure of adeno-associated virus serotype 5, J Virol 78, 3361–3371.PubMedCrossRefGoogle Scholar
  32. 32.
    Levy, H. C., Bowman, V. D., Govindasamy, L., McKenna, R., Nash, K., Warrington, K., Chen, W., Muzyczka, N., Yan, X., Baker, T. S., and Agbandje-McKenna, M. (2009) Heparin binding induces conformational changes in Adeno-associated virus serotype 2, J Struct Biol 165, 146–156.PubMedCrossRefGoogle Scholar
  33. 33.
    Kronenberg, S., Bottcher, B., von der Lieth, C. W., Bleker, S., and Kleinschmidt, J. A. (2005) A conformational change in the adeno-associated virus type 2 capsid leads to the exposure of hidden VP1 N termini, J Virol 79, 5296–5303.PubMedCrossRefGoogle Scholar
  34. 34.
    Kronenberg, S., Kleinschmidt, J. A., and Bottcher, B. (2001) Electron cryo-microscopy and image reconstruction of adeno-associated virus type 2 empty capsids, EMBO Rep 2, 997–1002.PubMedCrossRefGoogle Scholar
  35. 35.
    Lerch, T. F., Xie, Q., and Chapman, M. S. (2010) The structure of adeno-associated virus serotype 3B (AAV-3B): insights into receptor binding and immune evasion, Virology, 403, 26–36.PubMedCrossRefGoogle Scholar
  36. 36.
    Robert, N. G., Govindasamy, L., Gurda, B. L., McKenna, R., Kozyreva, O. G., Samulski, R. J., Parent, K. N., Baker, T. S., and Agbandje-McKenna, M. (2010) Structural Characterization of the Dual Glycan Binding Adeno-Associated Virus Serotype 6, J Virol. 84, 12945–12957.PubMedCrossRefGoogle Scholar
  37. 37.
    Bleker, S., Sonntag, F., and Kleinschmidt, J. A. (2005) Mutational analysis of narrow pores at the fivefold symmetry axes of adeno-associated virus type 2 capsids reveals a dual role in genome packaging and activation of phospholipase A2 activity, J Virol 79, 2528–2540.PubMedCrossRefGoogle Scholar
  38. 38.
    Gerlach, B., Kleinschmidt, J. A., Böttcher, B. (2011) Conformational changes in adeno-associated virus type 1 induced by genome packaging, JMB, 409(3), 427–438 and unpublished results.PubMedCrossRefGoogle Scholar
  39. 39.
    Kaufmann, B., Simpson, A. A., and Rossmann, M. G. (2004) The structure of human parvovirus B19, Proc Natl Acad Sci USA 101, 11628–11633.PubMedCrossRefGoogle Scholar
  40. 40.
    Farr, G. A., Cotmore, S. F., and Tattersall, P. (2006) VP2 cleavage and the leucine ring at the base of the fivefold cylinder control pH-dependent externalization of both the VP1 N terminus and the genome of minute virus of mice, J Virol 80, 161–171.PubMedCrossRefGoogle Scholar
  41. 41.
    Farr, G. A., and Tattersall, P. (2004) A conserved leucine that constricts the pore through the capsid fivefold cylinder plays a central role in parvoviral infection, Virology 323, 243–256.PubMedCrossRefGoogle Scholar
  42. 42.
    Farr, G. A., Zhang, L. G., and Tattersall, P. (2005) Parvoviral virions deploy a capsid-tethered lipolytic enzyme to breach the endosomal membrane during cell entry, Proc Natl Acad Sci U S A 102, 17148–17153.PubMedCrossRefGoogle Scholar
  43. 43.
    Sonntag, F., Bleker, S., Leuchs, B., Fischer, R., and Kleinschmidt, J. A. (2006) Adeno-associated virus type 2 capsids with externalized VP1/VP2 trafficking domains are generated prior to passage through the cytoplasm and are maintained until uncoating occurs in the nucleus, J Virol 80, 11040–11054.PubMedCrossRefGoogle Scholar
  44. 44.
    Mani, B., Baltzer, C., Valle, N., Almendral, J. M., Kempf, C., and Ros, C. (2006) Low pH-dependent endosomal processing of the incoming parvovirus minute virus of mice virion leads to externalization of the VP1 N-terminal sequence (N-VP1), N-VP2 cleavage, and uncoating of the full-length genome, J Virol 80, 1015–1024.PubMedCrossRefGoogle Scholar
  45. 45.
    Girod, A., Wobus, C. E., Zadori, Z., Ried, M., Leike, K., Tijssen, P., Kleinschmidt, J. A., and Hallek, M. (2002) The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity, J Gen Virol 83, 973–978.PubMedGoogle Scholar
  46. 46.
    Zadori, Z., Szelei, J., Lacoste, M. C., Li, Y., Gariepy, S., Raymond, P., Allaire, M., Nabi, I. R., and Tijssen, P. (2001) A viral phospholipase A2 is required for parvovirus infectivity, Dev Cell 1, 291–302.PubMedCrossRefGoogle Scholar
  47. 47.
    Kontou, M., Govindasamy, L., Nam, H. J., Bryant, N., Llamas-Saiz, A. L., Foces-Foces, C., Hernando, E., Rubio, M. P., McKenna, R., Almendral, J. M., and Agbandje-McKenna, M. (2005) Structural determinants of tissue tropism and in vivo pathogenicity for the parvovirus minute virus of mice, J Virol 79, 10931–10943.PubMedCrossRefGoogle Scholar
  48. 48.
    Bennett, A., McKenna, R., and Agbandje-McKenna, M. (2008) A comparative analysis of the structural architecture of ssDNA viruses, Computational and Mathematical Methods in Medicine Vol. 9, 183–196.CrossRefGoogle Scholar
  49. 49.
    Summerford, C., and Samulski, R. J. (1998) Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions, J Virol 72, 1438–1445.PubMedGoogle Scholar
  50. 50.
    Chen, S., Kapturczak, M., Loiler, S. A., Zolotukhin, S., Glushakova, O. Y., Madsen, K. M., Samulski, R. J., Hauswirth, W. W., Campbell-Thompson, M., Berns, K. I., Flotte, T. R., Atkinson, M. A., Tisher, C. C., and Agarwal, A. (2005) Efficient transduction of vascular endothelial cells with recombinant adeno-associated virus serotype 1 and 5 vectors, Hum Gene Ther 16, 235–247.PubMedCrossRefGoogle Scholar
  51. 51.
    Wu, Z., Miller, E., Agbandje-McKenna, M., and Samulski, R. J. (2006) Alpha2,3 and alpha2,6 N-linked sialic acids facilitate efficient binding and transduction by adeno-associated virus types 1 and 6, J Virol 80, 9093–9103.PubMedCrossRefGoogle Scholar
  52. 52.
    Kaludov, N., Brown, K. E., Walters, R. W., Zabner, J., and Chiorini, J. A. (2001) Adeno-associated virus serotype 4 (AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity, J Virol 75, 6884–6893.PubMedCrossRefGoogle Scholar
  53. 53.
    Walters, R. W., Yi, S. M., Keshavjee, S., Brown, K. E., Welsh, M. J., Chiorini, J. A., and Zabner, J. (2001) Binding of adeno-­associated virus type 5 to 2,3-linked sialic acid is required for gene transfer, J Biol Chem 276, 20610–20616.PubMedCrossRefGoogle Scholar
  54. 54.
    Di Pasquale, G., Davidson, B. L., Stein, C. S., Martins, I., Scudiero, D., Monks, A., and Chiorini, J. A. (2003) Identification of PDGFR as a receptor for AAV-5 transduction, Nat Med 9, 1306–1312.PubMedCrossRefGoogle Scholar
  55. 55.
    Wu, Z., Asokan, A., Grieger, J. C., Govindasamy, L., Agbandje-McKenna, M., and Samulski, R. J. (2006) Single amino acid changes can influence titer, heparin binding, and tissue tropism in different adeno-­associated virus serotypes, J Virol 80, 11393–11397.PubMedCrossRefGoogle Scholar
  56. 56.
    Shen, S., Brown, S. M., Randell, S. H., Asokan, A. Terminal N-Linked Galactose Is the Primary Receptor for Adeno-associated Virus 9. J Biological Chemistry, 286, 13532–13540.PubMedCrossRefGoogle Scholar
  57. 57.
    Bell, C. L., Vandenberghe, L. H., Bell, P., Limberis, M. P., Gao, G.-P., Vliet, K. V., Agbandje-McKenna, M., and Wilson, J. M. (2011) The AAV9 receptor and its modification to improve in vivo lung gene transfer in mice, J Clin Invest, 121(6), 2427–2435.PubMedCrossRefGoogle Scholar
  58. 58.
    Agbandje-McKenna, M., and Chapman, M. S. (2006) Correlating structure with function in the viral capsid, in Parvoviruses (Kerr, J. R., Cotmore, S. F., Bloom, M. E., Linden, R. M., and Parrish, C. R., Eds.), Edward Arnold, New York, New York.Google Scholar
  59. 59.
    Lopez-Bueno, A., Rubio, M. P., Bryant, N., McKenna, R., Agbandje-McKenna, M., and Almendral, J. M. (2006) Host-selected amino acid changes at the sialic acid binding pocket of the parvovirus capsid modulate cell binding affinity and determine virulence, J Virol 80, 1563–1573.PubMedCrossRefGoogle Scholar
  60. 60.
    Govindasamy, L., Hueffer, K., Parrish, C. R., and Agbandje-McKenna, M. (2003) Structures of host range-controlling regions of the capsids of canine and feline parvoviruses and mutants, J Virol 77, 12211–12221.PubMedCrossRefGoogle Scholar
  61. 61.
    Hueffer, K., Govindasamy, L., Agbandje-McKenna, M., and Parrish, C. R. (2003) Combinations of two capsid regions controlling canine host range determine canine transferrin receptor binding by canine and feline parvoviruses, J Virol 77, 10099–10105.PubMedCrossRefGoogle Scholar
  62. 62.
    Hafenstein, S., Palermo, L. M., Kostyuchenko, V. A., Xiao, C., Morais, M. C., Nelson, C. D., Bowman, V. D., Battisti, A. J., Chipman, P. R., Parrish, C. R., and Rossmann, M. G. (2007) Asymmetric binding of transferrin receptor to parvovirus capsids, Proc Natl Acad Sci U S A 104, 6585–6589.PubMedCrossRefGoogle Scholar
  63. 63.
    Chipman, P. R., Agbandje-McKenna, M., Kajigaya, S., Brown, K. E., Young, N. S., Baker, T. S., and Rossmann, M. G. (1996) Cryo-electron microscopy studies of empty capsids of human parvovirus B19 complexed with its cellular receptor, Proc Natl Acad Sci U S A 93, 7502–7506.PubMedCrossRefGoogle Scholar
  64. 64.
    Kern, A., Schmidt, K., Leder, C., Muller, O. J., Wobus, C. E., Bettinger, K., Von der Lieth, C. W., King, J. A., and Kleinschmidt, J. A. (2003) Identification of a heparin-binding motif on adeno-associated virus type 2 capsids, J Virol 77, 11072–11081.PubMedCrossRefGoogle Scholar
  65. 65.
    Lochrie, M. A., Tatsuno, G. P., Christie, B., McDonnell, J. W., Zhou, S., Surosky, R., Pierce, G. F., and Colosi, P. (2006) Mutations on the external surfaces of adeno-associated virus type 2 capsids that affect transduction and neutralization, J Virol 80, 821–834.PubMedCrossRefGoogle Scholar
  66. 66.
    Opie, S. R., Warrington, K. H., Jr., Agbandje-McKenna, M., Zolotukhin, S., and Muzyczka, N. (2003) Identification of amino acid residues in the capsid proteins of adeno-associated virus type 2 that contribute to heparan sulfate proteoglycan binding, J Virol 77, 6995–7006.PubMedCrossRefGoogle Scholar
  67. 67.
    Wu, P., Xiao, W., Conlon, T., Hughes, J., Agbandje-McKenna, M., Ferkol, T., Flotte, T., and Muzyczka, N. (2000) Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism, J Virol 74, 8635–8647.PubMedCrossRefGoogle Scholar
  68. 68.
    Chen, C. L., Jensen, R. L., Schnepp, B. C., Connell, M. J., Shell, R., Sferra, T. J., Bartlett, J. S., Clark, K. R., and Johnson, P. R. (2005) Molecular characterization of adeno-associated viruses infecting children, J Virol 79, 14781–14792.PubMedCrossRefGoogle Scholar
  69. 69.
    Qing, K., Mah, C., Hansen, J., Zhou, S., Dwarki, V., and Srivastava, A. (1999) Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2, Nat Med 5, 71–77.PubMedCrossRefGoogle Scholar
  70. 70.
    Kashiwakura, Y., Tamayose, K., Iwabuchi, K., Hirai, Y., Shimada, T., Matsumoto, K., Nakamura, T., Watanabe, M., Oshimi, K., and Daida, H. (2005) Hepatocyte growth factor receptor is a coreceptor for adeno-associated virus type 2 infection, J Virol 79, 609–614.PubMedCrossRefGoogle Scholar
  71. 71.
    Akache, B., Grimm, D., Pandey, K., Yant, S. R., Xu, H., and Kay, M. A. (2006) The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3, and 9, J Virol 80, 9831–9836.PubMedCrossRefGoogle Scholar
  72. 72.
    Summerford, C., Bartlett, J. S., and Samulski, R. J. (1999) AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection, Nat Med 5, 78–82.PubMedCrossRefGoogle Scholar
  73. 73.
    Asokan, A., Hamra, J. B., Govindasamy, L., Agbandje-McKenna, M., and Samulski, R. J. (2006) Adeno-associated virus type 2 contains an integrin alpha5beta1 binding domain essential for viral cell entry, J Virol 80, 8961–8969.PubMedCrossRefGoogle Scholar
  74. 74.
    Duan, D., Li, Q., Kao, A. W., Yue, Y., Pessin, J. E., and Engelhardt, J. F. (1999) Dynamin is required for recombinant adeno-associated virus type 2 infection, J Virol 73, 10371–10376.PubMedGoogle Scholar
  75. 75.
    Bartlett, J. S., Wilcher, R., and Samulski, R. J. (2000) Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors, J Virol 74, 2777–2785.PubMedCrossRefGoogle Scholar
  76. 76.
    Bantel-Schaal, U., Hub, B., and Kartenbeck, J. (2002) Endocytosis of adeno-associated virus type 5 leads to accumulation of virus particles in the Golgi compartment, J Virol 76, 2340–2349.PubMedCrossRefGoogle Scholar
  77. 77.
    Bantel-Schaal, U., Braspenning-Wesch, I., and Kartenbeck, J. (2009) Adeno-associated virus type 5 exploits two different entry pathways in human embryo fibroblasts, J Gen Virol 90, 317–322.PubMedCrossRefGoogle Scholar
  78. 78.
    Seisenberger, G., Ried, M. U., Endress, T., Buning, H., Hallek, M., and Brauchle, C. (2001) Real-time single-molecule imaging of the infection pathway of an adeno-associated virus, Science 294, 1929–1932.PubMedCrossRefGoogle Scholar
  79. 79.
    Duan, D., Yue, Y., Yan, Z., Yang, J., and Engelhardt, J. F. (2000) Endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus, J Clin Invest 105, 1573–1587.PubMedCrossRefGoogle Scholar
  80. 80.
    Sanlioglu, S., Benson, P. K., Yang, J., Atkinson, E. M., Reynolds, T., and Engelhardt, J. F. (2000) Endocytosis and nuclear trafficking of adeno-associated virus type 2 are controlled by rac1 and phosphatidylinositol-3 kinase activation, J Virol 74, 9184–9196.PubMedCrossRefGoogle Scholar
  81. 81.
    Qiu, J., and Brown, K. E. (1999) A 110-kDa nuclear shuttle protein, nucleolin, specifically binds to adeno-associated virus type 2 (AAV-2) capsid, Virology 257, 373–382.PubMedCrossRefGoogle Scholar
  82. 82.
    Hansen, J., Qing, K., Kwon, H. J., Mah, C., and Srivastava, A. (2000) Impaired intracellular trafficking of adeno-associated virus type 2 vectors limits efficient transduction of murine fibroblasts, J Virol 74, 992–996.PubMedCrossRefGoogle Scholar
  83. 83.
    Hansen, J., Qing, K., and Srivastava, A. (2001) Adeno-associated virus type 2-mediated gene transfer: altered endocytic processing enhances transduction efficiency in murine fibroblasts, J Virol 75, 4080–4090.PubMedCrossRefGoogle Scholar
  84. 84.
    Hauck, B., Zhao, W., High, K., and Xiao, W. (2004) Intracellular viral processing, not single-stranded DNA accumulation, is crucial for recombinant adeno-associated virus transduction, J Virol 78, 13678–13686.PubMedCrossRefGoogle Scholar
  85. 85.
    Ding, W., Zhang, L. N., Yeaman, C., and Engelhardt, J. F. (2006) rAAV2 traffics through both the late and the recycling endosomes in a dose-dependent fashion, Mol Ther 13, 671–682.PubMedCrossRefGoogle Scholar
  86. 86.
    Ding, W., Zhang, L., Yan, Z., and Engelhardt, J. F. (2005) Intracellular trafficking of adeno-associated viral vectors, Gene Ther 12, 873–880.PubMedCrossRefGoogle Scholar
  87. 87.
    Douar, A. M., Poulard, K., Stockholm, D., and Danos, O. (2001) Intracellular trafficking of adeno-associated virus vectors: routing to the late endosomal compartment and proteasome degradation, J Virol 75, 1824–1833.PubMedCrossRefGoogle Scholar
  88. 88.
    Hansen, J., Qing, K., and Srivastava, A. (2001) Adeno-associated virus type 2-mediated gene transfer: altered endocytic processing enhances transduction efficiency in murine fibroblasts, J Virol 75, 4080–4090.PubMedCrossRefGoogle Scholar
  89. 89.
    Xiao, W., Warrington, K. H., Jr., Hearing, P., Hughes, J., and Muzyczka, N. (2002) Adenovirus-facilitated nuclear translocation of adeno-associated virus type 2, J Virol 76, 11505–11517.PubMedCrossRefGoogle Scholar
  90. 90.
    Pajusola, K., Gruchala, M., Joch, H., Luscher, T. F., Yla-Herttuala, S., and Bueler, H. (2002) Cell-type-specific characteristics modulate the transduction efficiency of adeno-associated virus type 2 and restrain infection of endothelial cells, J Virol 76, 11530–11540.PubMedCrossRefGoogle Scholar
  91. 91.
    Akache, B., Grimm, D., Shen, X., Fuess, S., Yant, S. R., Glazer, D. S., Park, J., and Kay, M. A. (2007) A two-hybrid screen identifies cathepsins B and L as uncoating factors for adeno-associated virus 2 and 8, Mol Ther 15, 330–339.PubMedCrossRefGoogle Scholar
  92. 92.
    Suikkanen, S., Antila, M., Jaatinen, A., Vihinen-Ranta, M., and Vuento, M. (2003) Release of canine parvovirus from endocytic vesicles, Virology 316, 267–280.PubMedCrossRefGoogle Scholar
  93. 93.
    Stahnke, S., Lux, K., Uhrig, S., Kreppel, F., Hösel, M., Coutelle, O., Ogris, M., Hallek, M., and Büning, H. (2011) Intrinsic phospholipase A2 activity of adeno-associated virus is involved in endosomal escape of incoming particles, Virology 409, 77–83. Epub 2010 Oct 25.PubMedCrossRefGoogle Scholar
  94. 94.
    Murphy, S. L., Bhagwat, A., Edmonson, S., Zhou, S., and High, K. A. (2008) High-throughput screening and biophysical interrogation of hepatotropic AAV, Mol Ther 16, 1960–1967.PubMedCrossRefGoogle Scholar
  95. 95.
    Agbandje-McKenna, M., Llamas-Saiz, A. L., Wang, F., Tattersall, P., and Rossmann, M. G. (1998) Functional implications of the structure of the murine parvovirus, minute virus of mice, Structure 6, 1369–1381.PubMedCrossRefGoogle Scholar
  96. 96.
    Tsao, J., Chapman, M. S., Agbandje, M., Keller, W., Smith, K., Wu, H., Luo, M., Smith, T. J., Rossmann, M. G., Compans, R. W., and et al. (1991) The three-dimensional structure of canine parvovirus and its functional implications, Science 251, 1456–1464.PubMedCrossRefGoogle Scholar
  97. 97.
    Xie, Q., and Chapman, M. S. (1996) Canine parvovirus capsid structure, analyzed at 2.9 A resolution, J Mol Biol 264, 497–520.PubMedCrossRefGoogle Scholar
  98. 98.
    Grieger, J. C., Johnson, J. S., Gurda-Whitaker, B., Agbandje-McKenna, M., and Samulski, R. J. (2007) Surface-exposed adeno-associated virus Vp1-NLS capsid fusion protein rescues infectivity of noninfectious wild-type Vp2/Vp3 and Vp3-only capsids but not that of fivefold pore mutant virions, J Virol 81, 7833–7843.PubMedCrossRefGoogle Scholar
  99. 99.
    DiPrimio, N., Asokan, A., Govindasamy, L., Agbandje-McKenna, M., and Samulski, R. J. (2008) Surface loop dynamics in adeno-associated virus capsid assembly, J Virol 82, 5178–5189.PubMedCrossRefGoogle Scholar
  100. 100.
    Yan, Z., Zak, R., Luxton, G. W., Ritchie, T. C., Bantel-Schaal, U., and Engelhardt, J. F. (2002) Ubiquitination of both adeno-associated virus type 2 and 5 capsid proteins affects the transduction efficiency of recombinant vectors, J Virol 76, 2043–2053.PubMedCrossRefGoogle Scholar
  101. 101.
    Ding, W., Yan, Z., Zak, R., Saavedra, M., Rodman, D. M., and Engelhardt, J. F. (2003) Second-strand genome conversion of adeno-associated virus type 2 (AAV-2) and AAV-5 is not rate limiting following apical infection of polarized human airway epithelia, J Virol 77, 7361–7366.PubMedCrossRefGoogle Scholar
  102. 102.
    Yan, Z., Zak, R., Zhang, Y., Ding, W., Godwin, S., Munson, K., Peluso, R., and Engelhardt, J. F. (2004) Distinct classes of proteasome-modulating agents cooperatively augment recombinant adeno-associated virus type 2 and type 5-mediated transduction from the apical surfaces of human airway epithelia, J Virol 78, 2863–2874.PubMedCrossRefGoogle Scholar
  103. 103.
    Denby, L., Nicklin, S. A., and Baker, A. H. (2005) Adeno-associated virus (AAV)-7 and -8 poorly transduce vascular endothelial cells and are sensitive to proteasomal degradation, Gene Ther 12, 1534–1538.PubMedCrossRefGoogle Scholar
  104. 104.
    Jennings, K., Miyamae, T., Traister, R., Marinov, A., Katakura, S., Sowders, D., Trapnell, B., Wilson, J. M., Gao, G., and Hirsch, R. (2005) Proteasome inhibition enhances AAV-mediated transgene expression in human synoviocytes in vitro and in vivo, Mol Ther 11, 600–607.PubMedCrossRefGoogle Scholar
  105. 105.
    Zhong, L., Zhao, W., Wu, J., Li, B., Zolotukhin, S., Govindasamy, L., Agbandje-McKenna, M., and Srivastava, A. (2007) A dual role of EGFR protein tyrosine kinase signaling in ubiquitination of AAV2 capsids and viral second-strand DNA synthesis, Mol Ther 15, 1323–1330.PubMedCrossRefGoogle Scholar
  106. 106.
    Zhong, L., Li, B., Mah, C. S., Govindasamy, L., Agbandje-McKenna, M., Cooper, M., Herzog, R. W., Zolotukhin, I., Warrington, K. H., Jr., Weigel-Van Aken, K. A., Hobbs, J. A., Zolotukhin, S., Muzyczka, N., and Srivastava, A. (2008) Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses, Proc Natl Acad Sci U S A 105, 7827–7832.PubMedCrossRefGoogle Scholar
  107. 107.
    Zhong, L., Li, B., Jayandharan, G., Mah, C. S., Govindasamy, L., Agbandje-McKenna, M., Herzog, R. W., Weigel-Van Aken, K. A., Hobbs, J. A., Zolotukhin, S., Muzyczka, N., and Srivastava, A. (2008) Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression, Virology 381, 194–202.PubMedCrossRefGoogle Scholar
  108. 108.
    Kelkar, S., De, B. P., Gao, G., Wilson, J. M., Crystal, R. G., and Leopold, P. L. (2006) A common mechanism for cytoplasmic dynein-dependent microtubule binding shared among adeno-associated virus and adenovirus serotypes, J Virol 80, 7781–7785.PubMedCrossRefGoogle Scholar
  109. 109.
    Zhao, W., Zhong, L., Wu, J., Chen, L., Qing, K., Weigel-Kelley, K. A., Larsen, S. H., Shou, W., Warrington, K. H., Jr., and Srivastava, A. (2006) Role of cellular FKBP52 protein in intracellular trafficking of recombinant adeno-associated virus 2 vectors, Virology 353, 283–293.PubMedCrossRefGoogle Scholar
  110. 110.
    Hirosue, S., Senn, K., Clement, N., Nonnenmacher, M., Gigout, L., Linden, R. M., and Weber, T. (2007) Effect of inhibition of dynein function and microtubule-altering drugs on AAV2 transduction, Virology 367, 10–18.PubMedCrossRefGoogle Scholar
  111. 111.
    Xu, J., Ma, C., Bass, C., and Terwilliger, E. F. (2005) A combination of mutations enhances the neurotropism of AAV-2, Virology 341, 203–214.PubMedCrossRefGoogle Scholar
  112. 112.
    Xiao, W., Warrington, K. H., Jr., Hearing, P., Hughes, J., and Muzyczka, N. (2002) Adenovirus-facilitated nuclear translocation of adeno-associated virus type 2, J Virol 76, 11505–11517.PubMedCrossRefGoogle Scholar
  113. 113.
    Grieger, J. C., Snowdy, S., and Samulski, R. J. (2006) Separate basic region motifs within the adeno-associated virus capsid proteins are essential for infectivity and assembly, J Virol 80, 5199–5210.PubMedCrossRefGoogle Scholar
  114. 114.
    Hansen, J., Qing, K., and Srivastava, A. (2001) Infection of purified nuclei by adeno-associated virus 2, Mol Ther 4, 289–296.PubMedCrossRefGoogle Scholar
  115. 115.
    Cohen, S., and Pante, N. (2005) Pushing the envelope: microinjection of Minute virus of mice into Xenopus oocytes causes damage to the nuclear envelope, J Gen Virol 86, 3243–3252.PubMedCrossRefGoogle Scholar
  116. 116.
    Cohen, S., Behzad, A. R., Carroll, J. B., and Pante, N. (2006) Parvoviral nuclear import: bypassing the host nuclear-transport machinery, J Gen Virol 87, 3209–3213.PubMedCrossRefGoogle Scholar
  117. 117.
    Sipo, I., Fechner, H., Pinkert, S., Suckau, L., Wang, X., Weger, S., and Poller, W. (2007) Differential internalization and nuclear uncoating of self-complementary adeno-associated virus pseudotype vectors as determinants of cardiac cell transduction, Gene Ther 14, 1319–1329.PubMedGoogle Scholar
  118. 118.
    Thomas, C. E., Storm, T. A., Huang, Z., and Kay, M. A. (2004) Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors, J Virol 78, 3110–3122.PubMedCrossRefGoogle Scholar
  119. 119.
    Zhong, L., Li, W., Yang, Z., Qing, K., Tan, M., Hansen, J., Li, Y., Chen, L., Chan, R. J., Bischof, D., Maina, N., Weigel-Kelley, K. A., Zhao, W., Larsen, S. H., Yoder, M. C., Shou, W., and Srivastava, A. (2004) Impaired nuclear transport and uncoating limit recombinant adeno-associated virus 2 vector-­mediated transduction of primary murine hematopoietic cells, Hum Gene Ther 15, 1207–1218.PubMedCrossRefGoogle Scholar
  120. 120.
    Stieger, K., Schroeder, J., Provost, N., Mendes-Madeira, A., Belbellaa, B., Le Meur, G., Weber, M., Deschamps, J. Y., Lorenz, B., Moullier, P., and Rolling, F. (2009) Detection of intact rAAV particles up to 6 years after successful gene transfer in the retina of dogs and primates, Mol Ther 17, 516–523.PubMedCrossRefGoogle Scholar
  121. 121.
    Lux, K., Goerlitz, N., Schlemminger, S., Perabo, L., Goldnau, D., Endell, J., Leike, K., Kofler, D. M., Finke, S., Hallek, M., and Buning, H. (2005) Green fluorescent protein-tagged adeno-associated virus particles allow the study of cytosolic and nuclear trafficking, J Virol 79, 11776–11787.PubMedCrossRefGoogle Scholar
  122. 122.
    Cotmore, S. F., D’Abramo A, M., Jr., Ticknor, C. M., and Tattersall, P. (1999) Controlled conformational transitions in the MVM virion expose the VP1 N-terminus and viral genome without particle disassembly, Virology 254, 169–181.Google Scholar
  123. 123.
    Ros, C., Baltzer, C., Mani, B., and Kempf, C. (2006) Parvovirus uncoating in vitro reveals a mechanism of DNA release without capsid disassembly and striking differences in encapsidated DNA stability, Virology 345, 137–147.PubMedCrossRefGoogle Scholar
  124. 124.
    Vihinen-Ranta, M., Wang, D., Weichert, W. S., and Parrish, C. R. (2002) The VP1 N-terminal sequence of canine parvovirus affects nuclear transport of capsids and efficient cell infection, J Virol 76, 1884–1891.PubMedCrossRefGoogle Scholar
  125. 125.
    Ferrari, F. K., Samulski, T., Shenk, T., and Samulski, R. J. (1996) Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors, J Virol 70, 3227–3234.PubMedGoogle Scholar
  126. 126.
    Fisher, K. J., Gao, G., Weitzman, M. D., DeMatteo, R., Burda, J., and Wilson, J. M. (1996) Transduction with recombinant adeno-associated virus for gene therapy is ­limited by leading-strand synthesis, J. Virol. 70, 520–532.PubMedGoogle Scholar
  127. 127.
    Zhong, L., Zhou, X., Li, Y., Qing, K., Xiao, X., Samulski, R. J., and Srivastava, A. (2008) Single-polarity recombinant adeno-associated virus 2 vector-mediated transgene expression in vitro and in vivo: mechanism of transduction, Mol Ther 16, 290–295.PubMedCrossRefGoogle Scholar
  128. 128.
    Zhou, X., Zeng, X., Fan, Z., Li, C., McCown, T., Samulski, R. J., and Xiao, X. (2008) Adeno-associated virus of a single-polarity DNA genome is capable of transduction in vivo, Mol Ther 16, 494–499.PubMedCrossRefGoogle Scholar
  129. 129.
    Qing, K., Hansen, J., Weigel-Kelley, K. A., Tan, M., Zhou, S., and Srivastava, A. (2001) Adeno-associated virus type 2-mediated gene transfer: role of cellular fkbp52 protein in transgene expression, J Virol 75, 8968–8976.PubMedCrossRefGoogle Scholar
  130. 130.
    Qing, K., Khuntirat, B., Mah, C., Kube, D. M., Wang, X. S., Ponnazhagan, S., Zhou, S., Dwarki, V. J., Yoder, M. C., and Srivastava, A. (1998) Adeno-associated virus type 2-mediated gene transfer: correlation of tyrosine phosphorylation of the cellular single-stranded D sequence-binding protein with transgene expression in human cells in vitro and murine tissues in vivo, J Virol 72, 1593–1599.PubMedGoogle Scholar
  131. 131.
    Qing, K., Wang, X. S., Kube, D. M., Ponnazhagan, S., Bajpai, A., and Srivastava, A. (1997) Role of tyrosine phosphorylation of a cellular protein in adeno-associated virus 2-mediated transgene expression, Proc Natl Acad Sci U S A 94, 10879–10884.PubMedCrossRefGoogle Scholar
  132. 132.
    Qing, K., Li, W., Zhong, L., Tan, M., Hansen, J., Weigel-Kelley, K. A., Chen, L., Yoder, M. C., and Srivastava, A. (2003) Adeno-associated virus type 2-mediated gene transfer: role of cellular T-cell protein tyrosine phosphatase in transgene expression in established cell lines in vitro and transgenic mice in vivo, J Virol 77, 2741–2746.PubMedCrossRefGoogle Scholar
  133. 133.
    Nakai, H., Storm, T. A., Fuess, S., and Kay, M. A. (2003) Pathways of removal of free DNA vector ends in normal and DNA-PKcs-deficient SCID mouse hepatocytes transduced with rAAV vectors, Hum Gene Ther 14, 871–881.PubMedCrossRefGoogle Scholar
  134. 134.
    Yue, Y., and Duan, D. (2003) Double strand interaction is the predominant pathway for intermolecular recombination of adeno-associated viral genomes, Virology 313, 1–7.PubMedCrossRefGoogle Scholar
  135. 135.
    McCarty, D. M., Young, S. M., Jr., and Samulski, R. J. (2004) Integration of adeno-associated virus (AAV) and recombinant AAV vectors, Annu Rev Genet 38, 819–845.PubMedCrossRefGoogle Scholar
  136. 136.
    Cervelli, T., Palacios, J. A., Zentilin, L., Mano, M., Schwartz, R. A., Weitzman, M. D., and Giacca, M. (2008) Processing of recombinant AAV genomes occurs in specific nuclear structures that overlap with foci of DNA-damage-response proteins, J Cell Sci 121, 349–357.PubMedCrossRefGoogle Scholar
  137. 137.
    Schwartz, R. A., Palacios, J. A., Cassell, G. D., Adam, S., Giacca, M., and Weitzman, M. D. (2007) The Mre11/Rad50/Nbs1 complex limits adeno-associated virus transduction and replication, J Virol 81, 12936–12945.PubMedCrossRefGoogle Scholar
  138. 138.
    Jurvansuu, J., Raj, K., Stasiak, A., and Beard, P. (2005) Viral transport of DNA damage that mimics a stalled replication fork, J Virol 79, 569–580.PubMedCrossRefGoogle Scholar
  139. 139.
    Johnson, J. S., and Samulski, R. J. (2009) Enhancement of adeno-associated virus infection by mobilizing capsids into and out of the nucleolus, J Virol 83, 2632–2644.PubMedCrossRefGoogle Scholar
  140. 140.
    Knipe, D. M., and Howley, P. M. H. (2001) Fields Viroloy, Lippincott Williams&Wilkins, Philadelphia, USA.Google Scholar
  141. 141.
    Chiorini, J. A., Wiener, S. M., Owens, R. A., Kyostio, S. R., Kotin, R. M., and Safer, B. (1994) Sequence requirements for stable binding and function of Rep68 on the adeno-associated virus type 2 inverted terminal repeats, J Virol 68, 7448–7457.PubMedGoogle Scholar
  142. 142.
    McCarty, D. M., Pereira, D. J., Zolotukhin, I., Zhou, X., Ryan, J. H., and Muzyczka, N. (1994) Identification of linear DNA sequences that specifically bind the adeno-associated virus Rep protein, J Virol 68, 4988–4997.PubMedGoogle Scholar
  143. 143.
    Owens, R. A., Weitzman, M. D., Kyostio, S. R., and Carter, B. J. (1993) Identification of a DNA-binding domain in the amino terminus of adeno-associated virus Rep proteins, J Virol 67, 997–1005.PubMedGoogle Scholar
  144. 144.
    Snyder, R. O., Im, D. S., Ni, T., Xiao, X., Samulski, R. J., and Muzyczka, N. (1993) Features of the adeno-associated virus origin involved in substrate recognition by the viral Rep protein, J Virol 67, 6096–6104.PubMedGoogle Scholar
  145. 145.
    Ryan, J. H., Zolotukhin, S., and Muzyczka, N. (1996) Sequence requirements for binding of Rep68 to the adeno-associated virus terminal repeats, J Virol 70, 1542–1553.PubMedGoogle Scholar
  146. 146.
    Snyder, R. O., Samulski, R. J., and Muzyczka, N. (1990) In vitro resolution of covalently joined AAV chromosome ends, Cell 60, 105–113.PubMedCrossRefGoogle Scholar
  147. 147.
    Im, D. S., and Muzyczka, N. (1990) The AAV origin binding protein Rep68 is an ATP-dependent site-specific endonuclease with DNA helicase activity, Cell 61, 447–457.PubMedCrossRefGoogle Scholar
  148. 148.
    Zhou, X., Zolotukhin, I., Im, D. S., and Muzyczka, N. (1999) Biochemical characterization of adeno-associated virus rep68 DNA helicase and ATPase activities, J Virol 73, 1580–1590.PubMedGoogle Scholar
  149. 149.
    Nash, K., Chen, W., and Muzyczka, N. (2008) Complete in vitro reconstitution of adeno-associated virus DNA replication requires the minichromosome maintenance complex proteins, J Virol 82, 1458–1464.PubMedCrossRefGoogle Scholar
  150. 150.
    Ni, T. H., McDonald, W. F., Zolotukhin, I., Melendy, T., Waga, S., Stillman, B., and Muzyczka, N. (1998) Cellular proteins required for adeno-associated virus DNA replication in the absence of adenovirus coinfection, J Virol 72, 2777–2787.PubMedGoogle Scholar
  151. 151.
    Ward, P., Dean, F. B., O’Donnell, M. E., and Berns, K. I. (1998) Role of the adenovirus DNA-binding protein in in vitro adeno-associated virus DNA replication, J Virol 72, 420–427.PubMedGoogle Scholar
  152. 152.
    Stracker, T. H., Cassell, G. D., Ward, P., Loo, Y. M., van Breukelen, B., Carrington-Lawrence, S. D., Hamatake, R. K., van der Vliet, P. C., Weller, S. K., Melendy, T., and Weitzman, M. D. (2004) The Rep protein of adeno-associated virus type 2 interacts with single-stranded DNA-binding proteins that enhance viral replication, J Virol 78, 441–453.PubMedCrossRefGoogle Scholar
  153. 153.
    Myers, M. W., and Carter, B. J. (1981) Adeno-associated virus replication. The effect of L-canavanine or a helper virus mutation on accumulation of viral capsids and progeny single-stranded DNA, J Biol Chem 256, 567–570.PubMedGoogle Scholar
  154. 154.
    Wistuba, A., Kern, A., Weger, S., Grimm, D., and Kleinschmidt, J. A. (1997) Subcellular compartmentalization of adeno-associated virus type 2 assembly, J Virol 71, 1341–1352.PubMedGoogle Scholar
  155. 155.
    Weitzman, M. D., Fisher, K. J., and Wilson, J. M. (1996) Recruitment of wild-type and recombinant adeno-associated virus into adenovirus replication centers, J Virol 70, 1845–1854.PubMedGoogle Scholar
  156. 156.
    Hunter, L. A., and Samulski, R. J. (1992) Colocalization of adeno-associated virus Rep and capsid proteins in the nuclei of infected cells, J Virol 66, 317–324.PubMedGoogle Scholar
  157. 157.
    Bleker, S., Pawlita, M., and Kleinschmidt, J. A. (2006) Impact of capsid conformation and Rep-capsid interactions on adeno-associated virus type 2 genome packaging, J Virol 80, 810–820.PubMedCrossRefGoogle Scholar
  158. 158.
    Zhou, X., and Muzyczka, N. (1998) In vitro packaging of adeno-associated virus DNA, J Virol 72, 3241–3247.PubMedGoogle Scholar
  159. 159.
    Myers, M. W., and Carter, B. J. (1980) Assembly of adeno-associated virus, Virology 102, 71–82.PubMedCrossRefGoogle Scholar
  160. 160.
    Bevington, J. M., Needham, P. G., Verrill, K. C., Collaco, R. F., Basrur, V., and Trempe, J. P. (2007) Adeno-associated virus interactions with B23/Nucleophosmin: identification of sub-nucleolar virion regions, Virology 357, 102–113.PubMedCrossRefGoogle Scholar
  161. 161.
    Ruffing, M., Zentgraf, H., and Kleinschmidt, J. A. (1992) Assembly of viruslike particles by recombinant structural proteins of adeno-associated virus type 2 in insect cells, J Virol 66, 6922–6930.PubMedGoogle Scholar
  162. 162.
    Wistuba, A., Weger, S., Kern, A., and Kleinschmidt, J. A. (1995) Intermediates of adeno-associated virus type 2 assembly: identification of soluble complexes containing Rep and Cap proteins, J Virol 69, 5311–5319.PubMedGoogle Scholar
  163. 163.
    Steinbach, S., Wistuba, A., Bock, T., and Kleinschmidt, J. A. (1997) Assembly of adeno-associated virus type 2 capsids in vitro, J Gen Virol 78 (Pt 6), 1453–1462.PubMedGoogle Scholar
  164. 164.
    Hoque, M., Ishizu, K., Matsumoto, A., Han, S. I., Arisaka, F., Takayama, M., Suzuki, K., Kato, K., Kanda, T., Watanabe, H., and Handa, H. (1999) Nuclear transport of the major capsid protein is essential for adeno-associated virus capsid formation, J Virol 73, 7912–7915.PubMedGoogle Scholar
  165. 165.
    Warrington, K. H., Jr., Gorbatyuk, O. S., Harrison, J. K., Opie, S. R., Zolotukhin, S., and Muzyczka, N. (2004) Adeno-associated virus type 2 VP2 capsid protein is nonessential and can tolerate large peptide insertions at its N terminus, J Virol 78, 6595–6609.PubMedCrossRefGoogle Scholar
  166. 166.
    Rabinowitz, J. E., Xiao, W., and Samulski, R. J. (1999) Insertional mutagenesis of AAV2 capsid and the production of recombinant virus, Virology 265, 274–285.PubMedCrossRefGoogle Scholar
  167. 167.
    Sonntag et al (2010) PNAS 107, 10220–10225.PubMedCrossRefGoogle Scholar
  168. 168.
    Prasad, K. M., and Trempe, J. P. (1995) The adeno-associated virus Rep78 protein is covalently linked to viral DNA in a preformed virion, Virology 214, 360–370.PubMedCrossRefGoogle Scholar
  169. 169.
    Wang, X. S., Ponnazhagan, S., and Srivastava, A. (1996) Rescue and replication of adeno-associated virus type 2 as well as vector DNA sequences from recombinant plasmids containing deletions in the viral inverted terminal repeats: selective encapsidation of viral genomes in progeny virions, J Virol 70, 1668–1677.PubMedGoogle Scholar
  170. 170.
    Wang, X. S., Qing, K., Ponnazhagan, S., and Srivastava, A. (1997) Adeno-associated virus type 2 DNA replication in vivo: mutation analyses of the D sequence in viral inverted terminal repeats, J Virol 71, 3077–3082.PubMedGoogle Scholar
  171. 171.
    Srivastava, A., Wang, X.-S., Ponnazhagan, S., Zhou, S. Z., and Yoder, M. C. (1996) Adeno-associated Virus 2-Mediated Transduction and Erythroid Lineage-Specific Expression in Human Hematopoietic Progenitor Cells, in Adeno-Associated Virus (AAV) Vectors in Gene Therapy (Berns, K. I., and Giraud, C., Eds.), pp 93–117, Springer, Berlin Heidelberg New York.Google Scholar
  172. 172.
    Xiao, X., Xiao, W., Li, J., and Samulski, R. J. (1997) A novel 165-base-pair terminal repeat sequence is the sole cis requirement for the adeno-associated virus life cycle, J Virol 71, 941–948.PubMedGoogle Scholar
  173. 173.
    Dong, J. Y., Fan, P. D., and Frizzell, R. A. (1996) Quantitative analysis of the packaging capacity of recombinant adeno-associated virus, Hum Gene Ther 7, 2101–2112.PubMedCrossRefGoogle Scholar
  174. 174.
    Hermonat, P. L., Quirk, J. G., Bishop, B. M., and Han, L. (1997) The packaging capacity of adeno-associated virus (AAV) and the potential for wild-type-plus AAV gene therapy vectors, FEBS Lett 407, 78–84.PubMedCrossRefGoogle Scholar
  175. 175.
    Grieger, J. C., and Samulski, R. J. (2005) Packaging capacity of adeno-associated virus serotypes: impact of larger genomes on infectivity and postentry steps, J Virol 79, 9933–9944.PubMedCrossRefGoogle Scholar
  176. 176.
    Allocca, M., Doria, M., Petrillo, M., Colella, P., Garcia-Hoyos, M., Gibbs, D., Kim, S. R., Maguire, A., Rex, T. S., Di Vicino, U., Cutillo, L., Sparrow, J. R., Williams, D. S., Bennett, J., and Auricchio, A. (2008) Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice, J Clin Invest 118, 1955–1964.PubMedCrossRefGoogle Scholar
  177. 177.
    Lai, Y., Yue, Y., and Duan, D. Evidence for the failure of adeno-associated virus serotype 5 to package a viral genome  >  or  =  8.2 kb, Mol Ther 18, 75–79.Google Scholar
  178. 178.
    Dong, B., Nakai, H., and Xiao, W. Characterization of genome integrity for oversized recombinant AAV vector, Mol Ther 18, 87–92.Google Scholar
  179. 179.
    Wu, Z., Yang, H., and Colosi, P. Effect of genome size on AAV vector packaging, Mol Ther 18, 80–86.Google Scholar
  180. 180.
    Ward, P., Clement, N., and Linden, R. M. (2007) cis effects in adeno-associated virus type 2 replication, J Virol 81, 9976–9989.PubMedCrossRefGoogle Scholar
  181. 181.
    Grimm, D., Kern, A., Pawlita, M., Ferrari, F., Samulski, R., and Kleinschmidt, J. (1999) Titration of AAV-2 particles via a novel capsid ELISA: packaging of genomes can limit production of recombinant AAV-2, Gene Ther 6, 1322–1330.PubMedCrossRefGoogle Scholar
  182. 182.
    Drittanti, L., Jenny, C., Poulard, K., Samba, A., Manceau, P., Soria, N., Vincent, N., Danos, O., and Vega, M. (2001) Optimised helper virus-free production of high-quality adeno-associated virus vectors, J Gene Med 3, 59–71.PubMedCrossRefGoogle Scholar
  183. 183.
    Sommer, J. M., Smith, P. H., Parthasarathy, S., Isaacs, J., Vijay, S., Kieran, J., Powell, S. K., McClelland, A., and Wright, J. F. (2003) Quantification of adeno-associated virus particles and empty capsids by optical density measurement, Mol Ther 7, 122–128.PubMedCrossRefGoogle Scholar
  184. 184.
    Park, J. Y., Lim, B. P., Lee, K., Kim, Y. G., and Jo, E. C. (2006) Scalable production of adeno-associated virus type 2 vectors via suspension transfection, Biotechnol Bioeng 94, 416–430.PubMedCrossRefGoogle Scholar
  185. 185.
    Prasad, K. M., Zhou, C., and Trempe, J. P. (1997) Characterization of the Rep78/adeno-associated virus complex, Virology 229, 183–192.PubMedCrossRefGoogle Scholar
  186. 186.
    Dubielzig, R., King, J. A., Weger, S., Kern, A., and Kleinschmidt, J. A. (1999) Adeno-associated virus type 2 protein interactions: formation of pre-encapsidation complexes, J Virol 73, 8989–8998.PubMedGoogle Scholar
  187. 187.
    Chejanovsky, N., and Carter, B. J. (1989) Mutagenesis of an AUG codon in the adeno-associated virus rep gene: effects on viral DNA replication, Virology 173, 120–128.PubMedCrossRefGoogle Scholar
  188. 188.
    King, J. A., Dubielzig, R., Grimm, D., and Kleinschmidt, J. A. (2001) DNA helicase-mediated packaging of adeno-associated virus type 2 genomes into preformed capsids, Embo J 20, 3282–3291.PubMedCrossRefGoogle Scholar
  189. 189.
    Yoon-Robarts, M., Blouin, A. G., Bleker, S., Kleinschmidt, J. A., Aggarwal, A. K., Escalante, C. R., and Linden, R. M. (2004) Residues within the B’ motif are critical for DNA binding by the superfamily 3 helicase Rep40 of adeno-associated virus type 2, J Biol Chem 279, 50472–50481.PubMedCrossRefGoogle Scholar
  190. 190.
    Shi, W., Arnold, G. S., and Bartlett, J. S. (2001) Insertional mutagenesis of the adeno-associated virus type 2 (AAV2) capsid gene and generation of AAV2 vectors targeted to alternative cell-surface receptors, Hum Gene Ther 12, 1697–1711.PubMedCrossRefGoogle Scholar
  191. 191.
    Zaiss and Muruve (2008) Immunity to adeno-associated virus vectors in animals and humans: a continued challenge. Gene Therapy 15, 808–16.PubMedCrossRefGoogle Scholar
  192. 192.
    Moskalenko, M., Chen, L., van Roey, M., Donahue, B. A., Snyder, R. O., McArthur, J. G., and Patel, S. D. (2000) Epitope mapping of human anti-adeno-associated virus type 2 neutralizing antibodies: implications for gene therapy and virus structure, J Virol 74, 1761–1766.PubMedCrossRefGoogle Scholar
  193. 193.
    Wobus, C. E., Hugle-Dorr, B., Girod, A., Petersen, G., Hallek, M., and Kleinschmidt, J. A. (2000) Monoclonal antibodies against the adeno-associated virus type 2 (AAV-2) capsid: epitope mapping and identification of capsid domains involved in AAV-2-cell interaction and neutralization of AAV-2 infection, J Virol 74, 9281–9293.PubMedCrossRefGoogle Scholar
  194. 194.
    Kuck, D., Kern, A., and Kleinschmidt, J. A. (2007) Development of AAV serotype-specific ELISAs using novel monoclonal antibodies, J Virol Methods 140, 17–24.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyUniversity of FloridaGainesvilleUSA
  2. 2.German Cancer Research CenterHeidelbergGermany

Personalised recommendations