Ligand Discovery Using Small-Molecule Microarrays

  • Dominick E. Casalena
  • Dina Wassaf
  • Angela N. Koehler
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 803)

Abstract

Genome-wide association studies and genetic linkage studies have created a growing list of proteins related to disease. Small molecules can serve as useful probes of function for these proteins in a cellular setting or may serve as leads for therapeutic development. High-throughput and general binding assays may provide a path for discovering small molecules that target proteins for which little is known about structure or function or for which conventional functional assays have failed. One such binding assay involves small-molecule microarrays (SMMs) containing compounds that have been arrayed and immobilized onto a solid support. The SMMs can be incubated with a protein target of interest and protein–small molecule interactions may be detected using a variety of fluorescent readouts. Several suitable methods for manufacturing SMMs exist and different immobilization methods may be more or less preferable for any given application. Here, we describe protocols for covalent capture of small molecules using an isocyanate-coated glass surface and detection of binding using purified protein.

Key words

Small-molecule microarrays Ligand discovery Isocyanate Rapamycin FK506 FKBP12 

References

  1. 1.
    Vegas, A. J., Fuller, J. H., and Koehler, A. N. (2008) Small-molecule microarrays as tools in ligand discovery, Chem Soc Rev 37, 1385–1394.PubMedCrossRefGoogle Scholar
  2. 2.
    Astle, J. M., Simpson, L.S., Huang, Y., Reddy, M.M., Wilson, R., Connell, S., Wilson, J., Kodadek, T. (2010) Seamless bead to microarray screening: rapid identification of the highest affinity protein ligands from large combinatorial libraries, Chem Biol 7 3845.CrossRefGoogle Scholar
  3. 3.
    Kwon, S. J., Lee, M. Y., Ku, B., Sherman, D. H., and Dordick, J. S. (2007) High-throughput, microarray-based synthesis of natural product analogues via in vitro metabolic pathway construction, ACS Chem Biol 2, 419–425.PubMedCrossRefGoogle Scholar
  4. 4.
    Uttamchandani, M., Lee, W. L., Wang, J., and Yao, S. Q. (2007) Quantitative inhibitor fingerprinting of metalloproteases using small molecule microarrays, J Am Chem Soc 129, 13110–13117.PubMedCrossRefGoogle Scholar
  5. 5.
    Vegas, A. J., Bradner, J. E., Tang, W., McPherson, O. M., Greenberg, E. F., Koehler, A. N., and Schreiber, S. L. (2007) Fluorous-based small-molecule microarrays for the discovery of histone deacetylase inhibitors, Angew Chem Int Ed Engl 46, 7960–7964.PubMedCrossRefGoogle Scholar
  6. 6.
    Urbina, H. D., Debaene, F., Jost, B., Bole-Feysot, C., Mason, D. E., Kuzmic, P., Harris, J. L., and Winssinger, N. (2006) Self-assembled small-molecule microarrays for protease screening and profiling, Chembiochem 7, 1790–1797.PubMedCrossRefGoogle Scholar
  7. 7.
    Koehler, A. N., Shamji, A. F., and Schreiber, S. L. (2003) Discovery of an inhibitor of a transcription factor using small molecule microarrays and diversity-oriented synthesis, J Am Chem Soc 125, 8420–8421.PubMedCrossRefGoogle Scholar
  8. 8.
    Stanton, B. Z., Peng, L. F., Maloof, N., Nakai, K., Wang, X., Duffner, J. L., Taveras, K. M., Hyman, J. M., Lee, S. W., Koehler, A. N., Chen, J. K., Fox, J. L., Mandinova, A., and Schreiber, S. L. (2009) A small molecule that binds Hedgehog and blocks its signaling in human cells, Nat Chem Biol 5, 154–156.PubMedCrossRefGoogle Scholar
  9. 9.
    Labuda, L. P., Pushechnikov, A., and Disney, M. D. (2009) Small molecule microarrays of RNA-focused peptoids help identify inhibitors of a pathogenic group I intron, ACS Chem Biol 4, 299–307.PubMedCrossRefGoogle Scholar
  10. 10.
    Duffner, J. L., Clemons, P. A., and Koehler, A. N. (2007) A pipeline for ligand discovery using small-molecule microarrays, Curr Opin Chem Biol 11, 74–82.PubMedCrossRefGoogle Scholar
  11. 11.
    Uttamchandani, M., Wang, J., and Yao, S. Q. (2006) Protein and small molecule microarrays: powerful tools for high-throughput proteomics, Mol Biosyst 2, 58–68.PubMedCrossRefGoogle Scholar
  12. 12.
    Kohn, M., Wacker, R., Peters, C., Schroder, H., Soulere, L., Breinbauer, R., Niemeyer, C. M., and Waldmann, H. (2003) Staudinger ligation: a new immobilization strategy for the preparation of small-molecule arrays, Angew Chem Int Ed Engl 42, 5830–5834.PubMedCrossRefGoogle Scholar
  13. 13.
    Bradner, J. E., McPherson, O. M., Mazitschek, R., Barnes-Seeman, D., Shen, J. P., Dhaliwal, J., Stevenson, K. E., Duffner, J. L., Park, S. B., Neuberg, D. S., Nghiem, P., Schreiber, S. L., and Koehler, A. N. (2006) A robust small-molecule microarray platform for screening cell lysates, Chem Biol 13, 493–504.PubMedCrossRefGoogle Scholar
  14. 14.
    Bradner, J. E., McPherson, O. M., and Koehler, A. N. (2006) A method for the covalent capture and screening of diverse small molecules in a microarray format, Nature Protocols 1 2344–2352.PubMedCrossRefGoogle Scholar
  15. 15.
    Miyazaki, I., Okumura, H., Simizu, S., Takahashi, Y., Kanoh, N., Muraoka, Y., Nonomura, Y., and Osada, H. (2009) Structure-affinity relationship study of bleomycins and Shble protein by use of a chemical array, Chembiochem 10, 845–852. 2Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Dominick E. Casalena
    • 1
  • Dina Wassaf
    • 1
  • Angela N. Koehler
    • 1
  1. 1.Chemical Biology PlatformThe Broad Institute of MIT and HarvardCambridgeUSA

Personalised recommendations