Prokaryote Genome Fluidity: Toward a System Approach of the Mobilome

Part of the Methods in Molecular Biology book series (MIMB, volume 804)


The importance of horizontal/lateral gene transfer (LGT) in shaping the genomes of prokaryotic organisms has been recognized in recent years as a result of analysis of the increasing number of available genome sequences. LGT is largely due to the transfer and recombination activities of mobile genetic elements (MGEs). Bacterial and archaeal genomes are mosaics of vertically and horizontally transmitted DNA segments. This generates reticulate relationships between members of the prokaryotic world that are better represented by networks than by “classical” phylogenetic trees. In this review we summarize the nature and activities of MGEs, and the problems that presently limit their analysis on a large scale. We propose routes to improve their annotation in the flow of genomic and metagenomic sequences that currently exist and those that become available. We describe network analysis of evolutionary relationships among some MGE categories and sketch out possible developments of this type of approach to get more insight into the role of the mobilome in bacterial adaptation and evolution.

Key words

Mobile genetic elements Intercellular gene transfer Recombination Reticulate classification Prokaryotes adaptation and ev0olution 



We wish to thank Hans Geiselmann for his encouragement and useful comments, Raphael Leplae and Gipsi Lima-Mendez for discussion and comments, and Laurence van Melderen and Shannon Williamson for their critical reading of the manuscript. Work on the ACLAME project in the BiGRe laboratory is financed by the European Space Agency (ESA-PRODEX) and the Belgian Science Policy (Belspo) through the EXANAM project (PRODEX agreements No. C90358), the Fonds de la Recherche Scientifique Médicale (FRSM), the Belgian Program on Interuniversity Attraction Poles, initiated by the Belgian Federal Science Policy Office, project P6/25 (BioMaGNet), the BioSapiens Network of excellence funded under the sixth Framework program of the European Communities (LSHG-CT-2003-503265) and the intramural programme of the CNRS (LMGM Toulouse).


  1. 1.
    Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R. (2005) The microbial pan-genome. Curr Opin Genet Dev, 15:589–594.PubMedCrossRefGoogle Scholar
  2. 2.
    Bapteste E, O’Malley MA, Beiko RG, Ereshefsky M, Gogarten JP, Franklin-Hall L, Lapointe FJ, Dupre J, Dagan T, Boucher Y, Martin W. (2009) Prokaryotic evolution and the tree of life are two different things. Biol Direct, 4:34.PubMedCrossRefGoogle Scholar
  3. 3.
    Baquero F. (2009) Environmental stress and evolvability in microbial systems. Clin Microbiol Infect, 15(Suppl. 1):5–10.PubMedCrossRefGoogle Scholar
  4. 4.
    Nagata Y, Endo R, Ito M, Ohtsubo Y, Tsuda M. (2007) Aerobic degradation of lindane (gamma-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Appl Microbiol Biotechnol, 76:741–752.PubMedCrossRefGoogle Scholar
  5. 5.
    Wackett LP, Sadowsky MJ, Martinez B, Shapir N. (2002) Biodegradation of atrazine and related s-triazine compounds: from enzymes to field studies. Appl Microbiol Biotechnol, 58:39–45.PubMedCrossRefGoogle Scholar
  6. 6.
    Frost LS, Leplae R, Summers AO, Toussaint A. (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol, 3:722–732.PubMedCrossRefGoogle Scholar
  7. 7.
    Langille MG, Hsiao WW, Brinkman FS. (2008) Evaluation of genomic island predictors using a comparative genomics approach. BMC Bioinformatics, 9:329.PubMedCrossRefGoogle Scholar
  8. 8.
    Arvey AJ, Azad RK, Raval A, Lawrence JG. (2009) Detection of genomic islands via segmental genome heterogeneity. Nucleic Acids Res, 37:5255–5266.PubMedCrossRefGoogle Scholar
  9. 9.
    Matic I, Taddei F, Radman M. (1996) Genetic barriers among bacteria. Trends Microbiol, 4:69–72.PubMedCrossRefGoogle Scholar
  10. 10.
    Saavedra De Bast M, Mine N, Van Melderen L. (2008) Chromosomal toxin-antitoxin systems may act as antiaddiction modules. J Bacteriol, 190:4603–4609.PubMedCrossRefGoogle Scholar
  11. 11.
    Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315:1709–1712.PubMedCrossRefGoogle Scholar
  12. 12.
    Beloglazova N, Brown G, Zimmerman MD, Proudfoot M, Makarova KS, Kudritska M, Kochinyan S, Wang S, Chruszcz M, Minor W, Koonin EV, Edwards AM, Savchenko A, Yakunin AF. (2008) A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats. J Biol Chem, 283:20361–20371.PubMedCrossRefGoogle Scholar
  13. 13.
    Marraffini LA, Sontheimer EJ. (2010) Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature, 463:568–571.PubMedCrossRefGoogle Scholar
  14. 14.
    Nekrasov SV, Agafonova OV, Belogurova NG, Delver EP, Belogurov AA. (2007) Plasmid-encoded antirestriction protein ArdA can discriminate between type I methyltransferase and complete restriction-modification system. J Mol Biol, 365:284–297.PubMedCrossRefGoogle Scholar
  15. 15.
    Martinez JL, Baquero F, Andersson DI. (2007) Predicting antibiotic resistance. Nat Rev Microbiol, 5:958–965.PubMedCrossRefGoogle Scholar
  16. 16.
    Toussaint A, Merlin C. (2002) Mobile elements as a combination of functional modules. Plasmid, 47:26–35.PubMedCrossRefGoogle Scholar
  17. 17.
    Thomas CM. (2000) The Horizontal Gene Pool: Bacterial Plasmids and Gene Spread. Harwood Academic Publishers, Amsterdam.CrossRefGoogle Scholar
  18. 18.
    Merlin C, Mahillon J, Nesvera J, Toussaint A. (2000) Gene Recruiters and Transporters: The Modular Structure of Bacterial Mobile Elements. In The Horizontal Gene Pool: Bacterial Plasmids and Gene Spread. Edited by Thomas CM, Harwood Academic Publishers, Amsterdam, 363–409.Google Scholar
  19. 19.
    Avery OT, Macleod CM, McCarty M. (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type Iii. J Exp Med, 79:137–158.PubMedCrossRefGoogle Scholar
  20. 20.
    Kovacs AT, Smits WK, Mironczuk AM, Kuipers OP. (2009) Ubiquitous late competence genes in Bacillus species indicate the presence of functional DNA uptake machineries. Environ Microbiol, 11:1911–1922.PubMedCrossRefGoogle Scholar
  21. 21.
    Averhoff B. (2009) Shuffling genes around in hot environments: the unique DNA transporter of Thermus thermophilus. FEMS Microbiol Rev, 33:611–626.PubMedCrossRefGoogle Scholar
  22. 22.
    Claverys JP, Martin B, Polard P. (2009) The genetic transformation machinery: composition, localization, and mechanism. FEMS Microbiol Rev, 33:643–656.PubMedCrossRefGoogle Scholar
  23. 23.
    Alvarez-Martinez CE, Christie PJ. (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev, 73:775–808.PubMedCrossRefGoogle Scholar
  24. 24.
    Hamilton HL, Dillard JP. (2006) Natural transformation of Neisseria gonorrhoeae: from DNA donation to homologous recombination. Mol Microbiol, 59:376–385.PubMedCrossRefGoogle Scholar
  25. 25.
    Rohwer F, Thurber RV. (2009) Viruses manipulate the marine environment. Nature, 459:207–212.PubMedCrossRefGoogle Scholar
  26. 26.
    de la Cruz F, Frost LS, Meyer RJ, Zechner EL. (2010) Conjugative DNA metabolism in Gram-negative bacteria. FEMS Microbiol Rev, 34:18–40.PubMedCrossRefGoogle Scholar
  27. 27.
    Abajy MY, Kopec J, Schiwon K, Burzynski M, Doring M, Bohn C, Grohmann E. (2007) A type IV-secretion-like system is required for conjugative DNA transport of broad-host-range plasmid pIP501 in gram-positive bacteria. J Bacteriol, 189:2487–2496.PubMedCrossRefGoogle Scholar
  28. 28.
    Ong CL, Beatson SA, McEwan AG, Schembri MA. (2009) Conjugative plasmid transfer and adhesion dynamics in an Escherichia coli biofilm. Appl Environ Microbiol, 75:6783–6791.PubMedCrossRefGoogle Scholar
  29. 29.
    Weinbauer MG, Rassoulzadegan F. (2004) Are viruses driving microbial diversification and diversity? Environ Microbiol, 6:1–11.PubMedCrossRefGoogle Scholar
  30. 30.
    Rodriguez-Valera F, Martin-Cuadrado AB, Rodriguez-Brito B, Pasic L, Thingstad TF, Rohwer F, Mira A. (2009) Explaining microbial population genomics through phage predation. Nat Rev Microbiol, 7:828–836.PubMedCrossRefGoogle Scholar
  31. 31.
    Garcillan-Barcia MP, Francia MV, de la Cruz F. (2009) The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol Rev, 33:657–687.PubMedCrossRefGoogle Scholar
  32. 32.
    Ravin NV. (2003) Mechanisms of replication and telomere resolution of the linear plasmid prophage N15. FEMS Microbiol Lett, 221:1–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Baker S, Hardy J, Sanderson KE, Quail M, Goodhead I, Kingsley RA, Parkhill J, Stocker B, Dougan G. (2007) A novel linear plasmid mediates flagellar variation in Salmonella typhi. PLoS Pathog, 3:e59.Google Scholar
  34. 34.
    Bentley SD, Brown S, Murphy LD, Harris DE, Quail MA, Parkhill J, Barrell BG, McCormick JR, Santamaria RI, Losick R, Yamasaki M, Kinashi H, Chen CW, Chandra G, Jakimowicz D, Kieser HM, Kieser T, Chater KF. (2004) SCP1, a 356,023 bp linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2). Mol Microbiol, 51:1615–1628.PubMedCrossRefGoogle Scholar
  35. 35.
    Huang CH, Chen CY, Tsai HH, Chen C, Lin YS, Chen CW. (2003) Linear plasmid SLP of Streptomyces lividans is a composite replicon. Mol Microbiol, 47:1563–1576.PubMedCrossRefGoogle Scholar
  36. 36.
    Craig NL, Craigie R, Gellert M, Lambowitz AM. (2003) Mobile DNA II. ASM Press, Washington, DC.Google Scholar
  37. 37.
    Martinsohn JT, Radman M, Petit MA. (2008) The lambda red proteins promote efficient recombination between diverged sequences: implications for bacteriophage genome mosaicism. PLoS Genet, 4:e1000065.PubMedCrossRefGoogle Scholar
  38. 38.
    Leplae R, Lima-Mendez G, Toussaint A. (2006) A first global analysis of plasmid encoded proteins in the ACLAME database. FEMS Microbiol Rev, 30:980–994.PubMedCrossRefGoogle Scholar
  39. 39.
    Austin S, Ziese M, Sternberg N. (1981) A novel role for site-specific recombination in maintenance of bacterial replicons. Cell, 25:729–736.PubMedCrossRefGoogle Scholar
  40. 40.
    Toro N, Jimenez-Zurdo JI, Garcia-Rodriguez FM. (2007) Bacterial group II introns: not just splicing. FEMS Microbiol Rev, 31:342–358.PubMedCrossRefGoogle Scholar
  41. 41.
    Shapiro JA. (1979) Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. Proc Natl Acad Sci U S A, 76:1933–1937.PubMedCrossRefGoogle Scholar
  42. 42.
    Symonds N, Toussaint A, van de Putte P, Howe MM. (1987) Phage Mu. Cold Spring Harbor Laboratory Press, New York.Google Scholar
  43. 43.
    Guynet C, Hickman AB, Barabas O, Dyda F, Chandler M, Ton-Hoang B. (2008) In vitro reconstitution of a single-stranded transposition mechanism of IS608. Mol Cell, 29:302–312.PubMedCrossRefGoogle Scholar
  44. 44.
    Ton-Hoang, B., Pasternak, C., Siguier, P., Guynet, C., Hickman, AB., Dyda, F., Sommer, S., and Chandler, M. (2010) Cell 142(3), 398–408. PMID 069190Google Scholar
  45. 45.
    Ehrlich SD, Bierne H, d’Alencon E, Vilette D, Petranovic M, Noirot P, Michel B. (1993) Mechanisms of illegitimate recombination. Gene, 135:161–166.Google Scholar
  46. 46.
    Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, Karch H, Reeves PR, Maiden MC, Ochman H, Achtman M. (2006) Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol, 60:1136–1151.PubMedCrossRefGoogle Scholar
  47. 47.
    Koonin EV, Wolf YI. (2008) Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res, 36:6688–6719.PubMedCrossRefGoogle Scholar
  48. 48.
    Smith MC, Thorpe HM. (2002) Diversity in the serine recombinases. Mol Microbiol, 44:299–307.PubMedCrossRefGoogle Scholar
  49. 49.
    Hallet B, Sherratt DJ. (1997) Transposition and site-specific recombination: adapting DNA cut-and-paste mechanisms to a variety of genetic rearrangements. FEMS Microbiol Rev, 21:157–178.PubMedCrossRefGoogle Scholar
  50. 50.
    Rice P, Craigie R, Davies DR. (1996) Retroviral integrases and their cousins. Curr Opin Struct Biol, 6:76–83.PubMedCrossRefGoogle Scholar
  51. 51.
    Rajeev L, Malanowska K, Gardner JF. (2009) Challenging a paradigm: the role of DNA homology in tyrosine recombinase reactions. Microbiol Mol Biol Rev, 73:300–309.PubMedCrossRefGoogle Scholar
  52. 52.
    Consortium GO. (2010) The Gene Ontology in 2010: extensions and refinements. Nucleic Acids Res, 38:D331–D335.CrossRefGoogle Scholar
  53. 53.
    Toussaint A, Lima-Mendez G, Leplae R. (2007) PhiGO, a phage ontology associated with the ACLAME database. Res Microbiol, 158(7):567–571.PubMedCrossRefGoogle Scholar
  54. 54.
    Joss MJ, Koenig JE, Labbate M, Polz MF, Gillings MR, Stokes HW, Doolittle WF, Boucher Y. (2009) ACID: annotation of cassette and integron data. BMC Bioinformatics, 10:118.PubMedCrossRefGoogle Scholar
  55. 55.
    Reiter WD, Palm P, Yeats S. (1989) Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res, 17:1907–1914.PubMedCrossRefGoogle Scholar
  56. 56.
    Mantri Y, Williams KP. (2004) Islander: a database of integrative islands in prokaryotic genomes, the associated integrases and their DNA site specificities. Nucleic Acids Res, 32(Database issue):D55–D58.Google Scholar
  57. 57.
    Langille MG, Brinkman FS. (2009) IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics, 25:664–665.PubMedCrossRefGoogle Scholar
  58. 58.
    Fouts DE. (2006) Phage_Finder: Automated identification and classification of prophage regions in complete bacterial genome sequences. Nucleic Acids Res, 34(20):5839–5851.PubMedCrossRefGoogle Scholar
  59. 59.
    Bose M, Barber RD. (2006) Prophage Finder: a prophage loci prediction tool for prokaryotic genome sequences. In Silico Biol, 6:0020.Google Scholar
  60. 60.
    Lima-Mendez G, Van Helden J, Toussaint A, Leplae R. (2008) Prophinder: a computational tool for prophage prediction in prokaryotic genomes. Bioinformatics, 24:863–865.PubMedCrossRefGoogle Scholar
  61. 61.
    Rowe-Magnus DA, Guerout AM, Biskri L, Bouige P, Mazel D. (2003) Comparative analysis of superintegrons: engineering extensive genetic diversity in the Vibrionaceae. Genome Res, 13:428–442.PubMedCrossRefGoogle Scholar
  62. 62.
    Ou HY, He X, Harrison EM, Kulasekara BR, Thani AB, Kadioglu A, Lory S, Hinton JC, Barer MR, Deng Z, Rajakumar K. (2007) MobilomeFINDER: web-based tools for in silico and experimental discovery of bacterial genomic islands. Nucleic Acids Res, 35:W97–W104.PubMedCrossRefGoogle Scholar
  63. 63.
    Darling AC, Mau B, Blattner FR, Perna NT. (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res, 14:1394–1403.PubMedCrossRefGoogle Scholar
  64. 64.
    Chiapello H, Bourgait I, Sourivong F, Heuclin G, Gendrault-Jacquemard A, Petit MA, El Karoui M. (2005) Systematic determination of the mosaic structure of bacterial genomes: species backbone versus strain-specific loops. BMC Bioinformatics, 6:171.PubMedCrossRefGoogle Scholar
  65. 65.
    Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. (2006) ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res, 34:D32–D36.PubMedCrossRefGoogle Scholar
  66. 66.
    Kichenaradja P, Siguier P, Perochon J, Chandler M. (2010) ISbrowser: an extension of ISfinder for visualizing insertion sequences in prokaryotic genomes. Nucleic Acids Res, 38:D62–D68.PubMedCrossRefGoogle Scholar
  67. 67.
    Cortez D, Forterre P, Gribaldo S. (2009) A hidden reservoir of integrative elements is the major source of recently acquired foreign genes and ORFans in archaeal and bacterial genomes. Genome Biol, 10:R65.PubMedCrossRefGoogle Scholar
  68. 68.
    Hacker J, Hochhut B, Middendorf B, Schneider G, Buchrieser C, Gottschalk G, Dobrindt U. (2004) Pathogenomics of mobile genetic elements of toxigenic bacteria. Int J Med Microbiol, 293:453–461.PubMedCrossRefGoogle Scholar
  69. 69.
    Ikeda H, Tomizawa J. (1968) Prophage P1, and extrachromosomal replication unit. Cold Spring Harb Symp Quant Biol, 33:791–798.PubMedGoogle Scholar
  70. 70.
    Rybchin VN, Svarchevsky AN. (1999) The plasmid prophage N15: a linear DNA with covalently closed ends. Mol Microbiol, 33:895–903.PubMedCrossRefGoogle Scholar
  71. 71.
    Toussaint A, Merlin C, Monchy S, Benotmane MA, Leplae R, Mergeay M, Springael D. (2003) The biphenyl- and 4-chlorobiphenyl-catabolic transposon Tn4371, a member of a new family of genomic islands related to IncP and Ti plasmids. Appl Environ Microbiol, 69:4837–4845.PubMedCrossRefGoogle Scholar
  72. 72.
    Brochet M, Da Cunha V, Couve E, Rusniok C, Trieu-Cuot P, Glaser P. (2009) Atypical association of DDE transposition with conjugation specifies a new family of mobile elements. Mol Microbiol, 71:948–959.PubMedCrossRefGoogle Scholar
  73. 73.
    Novick RP, Subedi A. (2007) The SaPIs: mobile pathogenicity islands of Staphylococcus. Chem Immunol Allergy, 93:42–57.PubMedCrossRefGoogle Scholar
  74. 74.
    Siguier P, Filee J, Chandler M. (2006) Insertion sequences in prokaryotic genomes. Curr Opin Microbiol, 9:526–531.PubMedCrossRefGoogle Scholar
  75. 75.
    Thieffry D, Thomas R. (1995) Dynamical behaviour of biological regulatory networks – II. Immunity control in bacteriophage lambda. Bull Math Biol, 57:277–297.Google Scholar
  76. 76.
    Su S, Khan SR, Farrand SK. (2008) Induction and loss of Ti plasmid conjugative competence in response to the acyl-homoserine lactone quorum-sensing signal. J Bacteriol, 190:4398–4407.PubMedCrossRefGoogle Scholar
  77. 77.
    McLeod SM, Burrus V, Waldor MK. (2006) Requirement for Vibrio cholerae integration host factor in conjugative DNA transfer. J Bacteriol, 188:5704–5711.PubMedCrossRefGoogle Scholar
  78. 78.
    Guerin E, Cambray G, Sanchez-Alberola N, Campoy S, Erill I, Da Re S, Gonzalez-Zorn B, Barbe J, Ploy MC, Mazel D. (2009) The SOS response controls integron recombination. Science, 324:1034.PubMedCrossRefGoogle Scholar
  79. 79.
    Dorman CJ. (2009) Nucleoid-associated proteins and bacterial physiology. Adv Appl Microbiol, 67:47–64.PubMedCrossRefGoogle Scholar
  80. 80.
    Gamas P, Caro L, Galas D, Chandler M. (1987) Expression of F transfer functions depends on the Escherichia coli integration host factor. Mol Gen Genet, 207:302–305.PubMedCrossRefGoogle Scholar
  81. 81.
    Nagy Z, Chandler M. (2004) Regulation of transposition in bacteria. Res Microbiol, 155:387–398.PubMedCrossRefGoogle Scholar
  82. 82.
    Hendrix RW, Lawrence JG, Hatfull GF, Casjens S. (2000) The origins and ongoing evolution of viruses. Trends Microbiol, 8:504–508.PubMedCrossRefGoogle Scholar
  83. 83.
    Nelson D. (2004) Phage taxonomy: we agree to disagree. J Bacteriol, 186:7029–7031.PubMedCrossRefGoogle Scholar
  84. 84.
    Lawrence JG, Hatfull GF, Hendrix RW. (2002) Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches. J Bacteriol, 184:4891–4905.PubMedCrossRefGoogle Scholar
  85. 85.
    Doolittle WF. (1999) Phylogenetic classification and the universal tree. Science, 284:2124–2129.PubMedCrossRefGoogle Scholar
  86. 86.
    Doolittle RF. (2000) Searching for the common ancestor. Res Microbiol, 151:85–89.PubMedCrossRefGoogle Scholar
  87. 87.
    Gogarten JP, Doolittle WF, Lawrence JG. (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol, 19:2226–2238.PubMedCrossRefGoogle Scholar
  88. 88.
    Lima-Mendez G, Van Helden J, Toussaint A, Leplae R. (2008) Reticulate representation of evolutionary and functional relationships between phage genomes. Mol Biol Evol, 25:762–777.PubMedCrossRefGoogle Scholar
  89. 89.
    Leplae R, Lima-Mendez G, Toussaint A. (2010) ACLAME: a CLAssification of Mobile genetic Elements, update 2010. Nucleic Acids Res, 38:D57–D61.PubMedCrossRefGoogle Scholar
  90. 90.
    Halary S, Leigh JW, Cheaib B, Lopez P, Bapteste E. (2010) Network analyses structure genetic diversity in independent genetic worlds. Proc Natl Acad Sci U S A, 107:127–132.PubMedCrossRefGoogle Scholar
  91. 91.
    Kay E, Chabrillat G, Vogel TM, Simonet P. (2003) Intergeneric transfer of chromosomal and conjugative plasmid genes between Ralstonia solanacearum and Acinetobacter sp. BD413. Mol Plant Microbe Interact, 16:74–82.Google Scholar
  92. 92.
    Molin S, Tolker-Nielsen T. (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol, 14:255–261.PubMedCrossRefGoogle Scholar
  93. 93.
    Casas V, Rohwer F. (2007) Phage metagenomics. Methods Enzymol, 421:259–268.PubMedCrossRefGoogle Scholar
  94. 94.
    Curcio MJ, Derbyshire KM. (2003) The outs and ins of transposition: from mu to kangaroo. Nat Rev Mol Cell Biol, 4:865–877.PubMedCrossRefGoogle Scholar
  95. 95.
    May EW, Craig NL. (1996) Switching from cut-and-paste to replicative Tn7 transposition. Science, 272:401–404.PubMedCrossRefGoogle Scholar
  96. 96.
    Juhas M, Power PM, Harding RM, Ferguson DJ, Dimopoulou ID, Elamin AR, Mohd-Zain Z, Hood DW, Adegbola R, Erwin A, Smith A, Munson RS, Harrison A, Mansfield L, Bentley S, Crook DW. (2007) Sequence and functional analyses of Haemophilus spp. genomic islands. Genome Biol, 8:R237.Google Scholar
  97. 97.
    Mazel D. (2006) Integrons: agents of bacterial evolution. Nat Rev Microbiol, 4:608–620.PubMedCrossRefGoogle Scholar
  98. 98.
    Bouvier M, Demarre G, Mazel D. (2005) Integron cassette insertion: a recombination process involving a folded single strand substrate. EMBO J, 24:4356–4367.PubMedCrossRefGoogle Scholar
  99. 99.
    Lang AS, Beatty JT. (2007) Importance of widespread gene transfer agent genes in alpha-proteobacteria. Trends Microbiol, 15:54–62.PubMedCrossRefGoogle Scholar
  100. 100.
    Polard P, Ton-Hoang B, Haren L, Betermier M, Walczak R, Chandler M. (1996) IS911-mediated transpositional recombination in vitro. J Mol Biol, 264:68–81.PubMedCrossRefGoogle Scholar
  101. 101.
    Duval-Valentin G, Marty-Cointin B, Chandler M. (2004) Requirement of IS911 replication before integration defines a new bacterial transposition pathway. EMBO J, 23:3897–3906.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe)Université Libre de BruxellesBruxellesBelgium
  2. 2.Laboratoire de Microbiologie et Génétique Moléculaire (UMR 5100)ToulouseFrance

Personalised recommendations