Genetic Network Analyzer: A Tool for the Qualitative Modeling and Simulation of Bacterial Regulatory Networks

  • Grégory Batt
  • Bruno Besson
  • Pierre-Emmanuel Ciron
  • Hidde de Jong
  • Estelle Dumas
  • Johannes Geiselmann
  • Regis Monte
  • Pedro T. Monteiro
  • Michel Page
  • François Rechenmann
  • Delphine Ropers
Part of the Methods in Molecular Biology book series (MIMB, volume 804)


Genetic Network Analyzer (GNA) is a tool for the qualitative modeling and simulation of gene regulatory networks, based on so-called piecewise-linear differential equation models. We describe the use of this tool in the context of the modeling of bacterial regulatory networks, notably the network of global regulators controlling the adaptation of Escherichia coli to carbon starvation conditions. We show how the modeler, by means of GNA, can define a regulatory network, build a model of the network, determine the steady states of the system, perform a qualitative simulation of the network dynamics, and analyze the simulation results using model-checking tools. The example illustrates the interest of qualitative approaches for the analysis of the dynamics of bacterial regulatory networks.

Key words

Genetic Network Analyzer Qualitative modeling and simulation Gene regulatory networks Piecewise-linear differential equations Model checking Carbon starvation Escherichia coli 



This work was partially supported by the FCT program (PhD grant SFRH/BD/32965/2006 to PTM). BB and HdJ were supported by the European commission under project COBIOS (FP6-2005-NEST-PATH-COM/043379). HdJ, JG, and DR were supported by the European commission under project EC-MOAN (FP6-2005-NEST-PATH-COM/043235).


  1. 1.
    Bolouri H. (2008) Computational Modelling of Gene Regulatory Networks: A Primer. Imperial College Press, London.Google Scholar
  2. 2.
    Heinrich R, Schuster S. (1996) The Regulation of Cellular Systems. Chapman & Hall, New York.CrossRefGoogle Scholar
  3. 3.
    de Jong H. (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol, 9:67–103.PubMedCrossRefGoogle Scholar
  4. 4.
    Fisher J, Henzinger T. (2007) Executable cell biology. Nat Biotechnol, 25(11):1239–1250.PubMedCrossRefGoogle Scholar
  5. 5.
    Karlebach G, Shamir R. (2008) Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol, 9(10):770–780.PubMedCrossRefGoogle Scholar
  6. 6.
    Thomas R, d’Ari R. (1990) Biological Feedback. CRC Press, Boca Raton, FL.Google Scholar
  7. 7.
    Chaouiya C. (2007) Petri net modelling of biological networks. Brief Bioinform, 8(4): 210–219.PubMedCrossRefGoogle Scholar
  8. 8.
    Palsson B. (2006) Systems Biology: Properties of Reconstructed Networks. Cambridge University Press, New York.CrossRefGoogle Scholar
  9. 9.
    Ciocchetta F, Hillston J. (2008) Process Algebras in Systems Biology. In Proc. 8th International School on Formal Methods for the Design of Computer, Communication, and Software Systems (SFM 2008), Volume 5016 of LNCS. Edited by Bernardo M, Degano P, Zavattaro G, Springer-Verlag, Berlin, 313–365.Google Scholar
  10. 10.
    Glass L, Kauffman S. (1973) The logical analysis of continuous non-linear biochemical control networks. J Theor Biol, 39:103–129.PubMedCrossRefGoogle Scholar
  11. 11.
    Batt G, de Jong H, Page M, Geiselmann J. (2008) Symbolic reachability analysis of genetic regulatory networks using discrete abstractions. Automatica, 44(4):982–989.CrossRefGoogle Scholar
  12. 12.
    Casey R, de Jong H, Gouzé JL. (2006) Piecewise-linear models of genetic regulatory networks: equilibria and their stability. J Math Biol, 52:27–56.PubMedCrossRefGoogle Scholar
  13. 13.
    Edwards R. (2006) Analysis of continuous-time switching networks. Physica D, 146(1–4):165–199.CrossRefGoogle Scholar
  14. 14.
    Farcot E, Gouzé JL. (2009) Periodic solutions of piecewise affine gene network models with non uniform decay rates: the case of a negative feedback loop. Acta Biotheor, 57(4):429–455.PubMedCrossRefGoogle Scholar
  15. 15.
    Gouzé JL, Sari T. (2002) A class of piecewise linear differential equations arising in biological models. Dyn Syst, 17(4):299–316.Google Scholar
  16. 16.
    Mestl T, Plahte E, Omholt S. (1995) A mathematical framework for describing and analysing gene regulatory networks. J Theor Biol, 176(2):291–300.PubMedCrossRefGoogle Scholar
  17. 17.
    Glass L, Pasternack J. (1978) Stable oscillations in mathematical models of biological control systems. J Math Biol, 6:207–223.CrossRefGoogle Scholar
  18. 18.
    Plahte E, Kjøglum S. (2005) Analysis and generic properties of gene regulatory networks with graded response functions. Physica D, 201:150–176.CrossRefGoogle Scholar
  19. 19.
    de Jong H, Geiselmann J, Hernandez C, Page M. (2003) Genetic Network Analyzer: qualitative simulation of genetic regulatory networks. Bioinformatics, 19(3):336–344.PubMedCrossRefGoogle Scholar
  20. 20.
    de Jong H, Page M. (2008) Search for steady states of piecewise-linear differential equation models of genetic regulatory networks. ACM/IEEE Trans Comput Biol Bioinform, 5(2):208–222.CrossRefGoogle Scholar
  21. 21.
    Monteiro P, Ropers D, Mateescu R, Freitas A, de Jong H. (2008) Temporal logic patterns for querying dynamic models of cellular interaction networks. Bioinformatics, 24(16):i227–i233.PubMedCrossRefGoogle Scholar
  22. 22.
    Ropers D, de Jong H, Page M, Schneider D, Geiselmann J. (2006) Qualitative simulation of the carbon starvation response in Escherichia coli. Biosystems, 84(2):124–152.PubMedCrossRefGoogle Scholar
  23. 23.
    Ropers D, Baldazzi V, de Jong H. (2011) Model reduction using piecewise-linear approximations preserves dynamic properties of the carbon starvation response in Escherichia coli. ACM/IEEE Trans Comput Biol Bioinform, 8(1):166–181.Google Scholar
  24. 24.
    Novère NL, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir E, Wegner K, Aladjem M, Wimalaratne S, Bergman F, Gauges R, Ghazal P, Kawaji H, Li L, Matsuoka Y, Villéger A, Boyd S, Calzone L, Courtot M, Dogrusoz U, Freeman T, Funahashi A, Ghosh S, Jouraku S, Kim S, Kolpakov F, Luna A, Sahle S, Schmidt E, Watterson S, Wu G, Goryanin I, Kell D, Sander C, Sauro H, Snoep J, Kohn K, Kitano H. (2009) The systems biology graphical notation. Nat Biotechnol, 27(8):735–742.Google Scholar
  25. 25.
    MH Saier J, Ramseier T, Reizer J. (1996) Regulation of Carbon Utilization. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. Edited by Neidhardt et al., ASM Press, Washington, DC, 1325–1343.Google Scholar
  26. 26.
    Gonzalez-Gil G, Bringmann P, Kahmann R: Fis is a regulator of metabolism in Escherichia coli. Mol. Microbiol. 1996, 22:21–29.PubMedCrossRefGoogle Scholar
  27. 27.
    Ishizuka H, Hanamura A, Inada T, Aiba H. (1994) Mechanism of the down-regulation of cAMP receptor protein by glucose in Escherichia coli: role of autoregulation of the crp gene. EMBO J, 13(13):3077–3082.PubMedGoogle Scholar
  28. 28.
    Azam TA, Iwata A, Nishimura A, Ueda S, Ishihama A. (1999) Growth phase dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol, 181(20):6361–6370.Google Scholar
  29. 29.
    de Jong H, Gouzé JL, Hernandez C, Page M, Sari T, Geiselmann J. (2004) Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bull Math Biol, 66(2):301–340.Google Scholar
  30. 30.
    Kuipers B. (1994) Qualitative Reasoning: Modeling and Simulation with Incomplete Knowledge. MIT Press, Cambridge, MA.Google Scholar
  31. 31.
    Farcot E. (2006) Geometric properties of a class of piecewise affine biological network models. J Math Biol, 52(3):373–418.PubMedCrossRefGoogle Scholar
  32. 32.
    Clarke E, Grumberg O, Peled D. (1999) Model Checking. MIT Press, Boston, MA.Google Scholar
  33. 33.
    Batt G, Ropers D, de Jong H, Geiselmann J, Mateescu R, Page M, Schneider D. (2005) Validation of qualitative models of genetic regulatory networks by model checking: analysis of the nutritional stress response in Escherichia coli. Bioinformatics, 21(Suppl 1):i19–i28.PubMedCrossRefGoogle Scholar
  34. 34.
    Monteiro P, Dumas E, Besson B, Mateescu R, Page M, Freitas A, de Jong H. (2009) A service-oriented architecture for integrating the modeling and verification of genetic regulatory networks. BMC Bioinform, 10:450.CrossRefGoogle Scholar
  35. 35.
    Cimatti A, Clarke EM, Giunchiglia E, Giunchiglia F, Pistore M, Roveri M, Sebastiani R, Tacchella A. (2002) NuSMV2: An OpenSource Tool for Symbolic Model Checking. In Proc. 14th Intl. Conf. Computer Aided Verification (CAV 2002), Volume 2404 of LNCS. Edited by Brinksma D, Larsen K, Springer-Verlag, Berlin, 359–364.Google Scholar
  36. 36.
    Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U. (2006) COPASI – a COmplex PAthway SImulator. Bioinformatics, 22(24): 3067–3074.PubMedCrossRefGoogle Scholar
  37. 37.
    Chen K, Calzone L, Csikasz-Nagy A, Cross F, Novak B, Tyson J. (2004) Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell, 15(8):3841–3862.PubMedCrossRefGoogle Scholar
  38. 38.
    Tyson J. (1991) Modeling the cell division cycle: cdc2 and cyclin interactions. Proc Natl Acad Sci U S A, 88:7328–7332.PubMedCrossRefGoogle Scholar
  39. 39.
    Snoussi E. (1989) Qualitative dynamics of piecewise-linear differential equations: a discrete mapping approach. Dynam Stab Syst, 4(3–4):189–207.Google Scholar
  40. 40.
    Plahte E, Mestl T, Omholt S. (1998) A methodological basis for description and analysis of systems with complex switch-like interactions. J Math Biol, 36(4):321–348.PubMedCrossRefGoogle Scholar
  41. 41.
    Bernot G, Comet JP, Richard A, Guespin J. (2004) Application of formal methods to biological regulatory networks: extending Thomas’ asynchronous logical approach with temporal logic. J Theor Biol, 229(3): 339–348.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Grégory Batt
    • 1
  • Bruno Besson
    • 2
  • Pierre-Emmanuel Ciron
    • 2
  • Hidde de Jong
    • 3
  • Estelle Dumas
    • 3
  • Johannes Geiselmann
    • 4
  • Regis Monte
    • 3
  • Pedro T. Monteiro
    • 3
  • Michel Page
    • 3
  • François Rechenmann
    • 3
  • Delphine Ropers
    • 3
  1. 1.INRIA Paris – Rocquencourt, Domaine de VoluceauLe ChesnayFrance
  2. 2.GenostarMontbonnotFrance
  3. 3.INRIA Rhône-AlpesMontbonnot, St. IsmierFrance
  4. 4.Laboratoire Adaptation et Pathogénie des Microorganismes (CNRS UMR 5163), Bâtiment Jean Roget, Faculté de Médecine-PharmacieUniversité Joseph FourierLa TroncheFrance

Personalised recommendations