Neisseria meningitidis pp 217-235

Part of the Methods in Molecular Biology book series (MIMB, volume 799) | Cite as

Human Dendritic Cell Culture and Bacterial Infection

  • Hannah E. Jones
  • Nigel Klein
  • Garth L. J. Dixon


Dendritic cells (DC) play a key role in the development of natural immunity to microbes. The DC form a bridge between the innate and adaptive immune system by providing key instructions particularly to antigen naïve T-cells. The interaction of DC with T lymphocytes involves three signals: (1) antigen processing and presentation in context of MHC Class I and/or II, (2) expression of T cell co-stimulatory molecules, and (3) cytokine production. Studying the interactions of DCs with specific pathogens allows for better understanding of how protective immunity is generated, and may be particularly useful for assessing vaccine components. In this chapter, we describe methods to generate human monocyte-derived DCs and assess their maturation, activation, and function, using interaction with the gram-negative bacterial pathogen Neisseria meningitidisas a model.

Key words

Human dendritic cells Neisseria meningitidis Maturation Phagocytosis T cell polarization 


  1. 1.
    Banchereau J, Briere F, Caux C et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811.PubMedCrossRefGoogle Scholar
  2. 2.
    Takeuchi O, Akira A (2010) Pattern recognition receptors and inflammation. Cell 140: 805–20.PubMedCrossRefGoogle Scholar
  3. 3.
    Murphy K M, Stockinger B (2010) Effector T cell plasticity: flexibility in the face of changing circumstances. Nature Immunol 11: 674680.CrossRefGoogle Scholar
  4. 4.
    Coquerelle C, Mosser M (2010) DC subsets in positive and negative regulation of immunity. Immunol Rev 234: 317–34.PubMedCrossRefGoogle Scholar
  5. 5.
    Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and down-regulated by tumor necrosis factor-alpha. J Exp Med 179:1109–1118.PubMedCrossRefGoogle Scholar
  6. 6.
    Caux C, Dezutter-Dambuyant C, Schmitt D et al (1992) GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature 360:258 –261.PubMedCrossRefGoogle Scholar
  7. 7.
    Bernard H, Disis ML, Heimfeld S et al (1995) Generation of immunostimulatory dendritic cells from human CD34+ hematopoietic progenitor cells of the bone marrow. Cancer Res 55:1099–1104.Google Scholar
  8. 8.
    Paczesny S, Li Y, Li N et al (2007) Effcient generation of CD34+ progenitor-derived dendritic cells from G-CSF-mobilized peripheral mononuclear cells does not require hematopoietic stem cell enrichment. J Leuk Biol 81: 957–67.CrossRefGoogle Scholar
  9. 9.
    Ueno H, Schmitt H, Klechevsky E et al (2010) Harnessing human dendritic cell subsets for medicine. Immunol Rev 234:199–212.PubMedCrossRefGoogle Scholar
  10. 10.
    Connolly NC, Whiteside TL, Wilson C et al (2008) Therapeutic immunization with human immunodeficiency virus type 1 (HIV-1) peptide-loaded dendritic cell is safe and induces immunogenicity in HIV-1 infected individuals. Clin Vac Immunol 15:284–292.CrossRefGoogle Scholar
  11. 11.
    Villcock A, Schmitt C, Schielke S et al (2008) Recognition via the class A scavenger receptor modulates cytokines secretion by human dendritic cells after contact with Neisseria meningitidis. Microbes Infect 10: 10–11.Google Scholar
  12. 12.
    Jones H E, Uronen-Hansson H, Callard RE et al (2008) The differential response of human dendritic cells to live and killed Neisseria meningitidis. Cell Microbiol 9:2856–2869.CrossRefGoogle Scholar
  13. 13.
    Steeghs L, van Vliet SJ, Uronen-Hansson H et al (2006) Neisseria meningitidisexpressing lgtB lipopolysacccharide targets DC-SIGN and modulates dendritic cell function. Cell Microbiol 8:316–25.PubMedCrossRefGoogle Scholar
  14. 14.
    Kurzai O, Schmitt C, Claus H et al (2005) Carbohydrate composition of meningococcal lipopolysaccharide modulates the interaction of Neisseria meningitidiswith human dendritic cells. Cell Microbiol 7:1319–1334.PubMedCrossRefGoogle Scholar
  15. 15.
    Al Bader T, Jolley KA, Humphries HE et al (2004) Activation of human dendritic cells by the PorA protein of Neisseria meningitidis. Cell Microbiol 6:651–662.PubMedCrossRefGoogle Scholar
  16. 16.
    Uronen-Hansson H, Steeghs L, Allen J et al (2004) Human dendritic cell activation by Neisseria meningitidis: phagocytosis depends on expression of lipooligosaccharide (LOS) by the bacteria and is required for optimal cytokine production. Cell Microbiol 6:625–637.PubMedCrossRefGoogle Scholar
  17. 17.
    Al Bader T, Christodoulides M, Heckels JE et al (2003) Activation of human dendritic cells is modulated by components of the outer membranes of Neisseria meningitidis. Infect Immun 71: 5590–5597.PubMedCrossRefGoogle Scholar
  18. 18.
    Unkmeir A, Kammerer U, Stade A et al (2002) Lipooligosaccharide and polysaccharide capsule: virulence factors of Neisseria meningitidisthat determine meningococcal interaction with human dendritic cells. Infect Immun 70: 2454–2462.PubMedCrossRefGoogle Scholar
  19. 19.
    Kolb-Maurer A, Unkmeir A, Kammerer U et al (2001) Interaction of Neisseria meningitidiswith human dendritic cells. Infect. Immun. 69, 6912–6922.PubMedCrossRefGoogle Scholar
  20. 20.
    Dixon GL, Newton PJ, Chain BM et al (2001) Dendritic cell activation and cytokine production induced by group B Neisseria meningitidis: interleukin-12 production depends on lipopolysaccharide expression in intact bacteria. Infect Immun 69:4351–4357.PubMedCrossRefGoogle Scholar
  21. 21.
    de Jong EC, Vieira PJ, Kalinski P et al (2002) Microbial compounds selectively induce Th1 cell-promoting or Th2 cell-promoting dendritic cells in vitro with diverse Th cell-polarising signals. J Immunol 168:17041709.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Hannah E. Jones
    • 1
  • Nigel Klein
    • 1
  • Garth L. J. Dixon
    • 2
  1. 1.Infectious Diseases and Microbiology Unit, Institute of Child HealthUniversity College LondonLondonUK
  2. 2.Department of Microbiology, Camelia Botnar LaboratoriesGreat Ormond Street HospitalLondonUK

Personalised recommendations