Advertisement

Techniques to Measure Pilus Retraction Forces

  • Nicolas Biais
  • Dustin Higashi
  • Magdalene So
  • Benoit Ladoux
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 799)

Abstract

The importance of physical forces in biology is becoming more appreciated. Neisseria gonorrhoeaehas become a paradigm for the study of physical forces in the bacterial world. Cycles of elongations and retractions of Type IV pili enables N. gonorrhoeaebacteria to exert forces on its environment, forces that play major roles in the life cycle of this pathogen. In order to better understand the role of these forces, there is a need to fully characterize them. Here, we present two different techniques, optical tweezers and Polyacrylamide MicroPillars (PoMPs), for measuring pilus retraction forces. Initially designed for N. gonorrhoeae, these assays can be readily modified to study other pilus-bearing bacteria including Neisseria meningitidis.

Key words

Neisseria Type IV pilus Retraction force Optical tweezer PoMPs 

Notes

Acknowledgments

N. B. and M. S. acknowledge the award of NIH grant AI079030. This work was also supported by the Agence Nationale de la Recherche (ANR) (Programme Blanc 2010 SVSE5 “MECANOCAD”) and the CNRS (Program Prise de Risques “Interface physique, biologie et chimie”).

References

  1. 1.
    Mattick JS (2002) Type IV pili and twitching motility. Ann Rev of Microbiol 56: 289–314.CrossRefGoogle Scholar
  2. 2.
    Hagblom P, Segal E, Billyard E et al (1985) Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae. Nature 315: 156–158.PubMedCrossRefGoogle Scholar
  3. 3.
    Aas FE, Egge-Jacobsen W, Winther-Larsen HC et al (2006) Neisseria gonorrhoeaetype IV pili undergo multisite, hierarchical modifications with phosphoethanolamine and phosphocholine requiring an enzyme structurally related to lipopolysaccharide phosphoethanolamine transferases. J Biol Chem 281: 27712–27723.PubMedCrossRefGoogle Scholar
  4. 4.
    Brown DR, Helaine S, Carbonnelle E et al (2010) Systematic functional analysis reveals that a set of seven genes is involved in fine-tuning of the multiple functions mediated by Type IV Pili in Neisseria meningitidis. Infect Immun 78: 3053–3063.PubMedCrossRefGoogle Scholar
  5. 5.
    Farge E (2003) Mechanical induction of twist in the Drosophila foregut/stomodeal primordium. Current Biol 13: 1365–1377.CrossRefGoogle Scholar
  6. 6.
    Gilbert PM, Havenstrite KL, Magnusson KEG et al (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329: 1078–1081.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang XH, Halvorsen K, Zhang CZ et al (2009) Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand Factor. Science 324: 1330–1334.PubMedCrossRefGoogle Scholar
  8. 8.
    Engler AJ, Sen S, Sweeney HL et al (2006) Matrix elasticity directs stem cell lineage specification. Cell 126: 677–689.PubMedCrossRefGoogle Scholar
  9. 9.
    Merz AJ, So M, Sheetz MP (2000) Pilus retraction powers bacterial twitching motility. Nature 407: 98–102.PubMedCrossRefGoogle Scholar
  10. 10.
    Maier B, Potter L, So M et al (2002) Single pilus motor forces exceed 100 pN. Proc Nat Acad Sci USA 99: 16012–16017.PubMedCrossRefGoogle Scholar
  11. 11.
    Biais N, Ladoux B, Higashi D et al (2008) Cooperative retraction of bundled type IV pili enables nanonewton force generation. Plos Biol 6: 907–913.CrossRefGoogle Scholar
  12. 12.
    Higashi DL, Zhang GH, Biais N et al (2009) Influence of type IV pilus retraction on the architecture of the Neisseria gonorrhoeae-infected cell cortex. Microbiol-SGM 155: 4084–4092.CrossRefGoogle Scholar
  13. 13.
    Howie HL, Glogauer M, So M (2005) The N.gonorrhoeaetype IV pilus stimulates mechanosensitive pathways and cytoprotection through a pilT-dependent mechanism. Plos Biol 3: 627–637.CrossRefGoogle Scholar
  14. 14.
    Sterba Re, Sheetz MP (1997) Basic laser tweezers. Meth Cell Biol 55: 29–41.CrossRefGoogle Scholar
  15. 15.
    McGee-Russell SM, Allen RD (1971) Reversible stabilization of labile microtubules in the reticulopodial network of Allogromia. Adv Cell Molec Biol 1: 153.Google Scholar
  16. 16.
    du Roure O, Saez A, Buguin A et al (2005) Force mapping in epithelial cell migration. Proc Nat Acad Sci USA 102: 2390–2395.PubMedCrossRefGoogle Scholar
  17. 17.
    Ghassemi S, Biais N, Maniura K et al (2008) Fabrication of elastomer pillar arrays with modulated stiffness for cellular force measurements. J Vac Sci Technol B 26: 2549–2553.CrossRefGoogle Scholar
  18. 18.
    Tanase M, Biais N, Sheetz M (2007) Magnetic tweezers in cell biology. Meth Cell Biol 83: 473–493.CrossRefGoogle Scholar
  19. 19.
    Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24: 156–&.Google Scholar
  20. 20.
    Simmons RM, Finer JT, Chu S et al (1996) Quantitative measurements of force and displacement using an optical trap. Biophys J 70: 1813–1822.PubMedCrossRefGoogle Scholar
  21. 21.
    Clausen M, Koomey M, Maier B (2009) Dynamics of Type IV Pili is controlled by switching between multiple states. Biophys J 96: 1169–1177.PubMedCrossRefGoogle Scholar
  22. 22.
    Gelles J, Schnapp BJ, Sheetz MP (1988) Tracking kinesin-driven movements with nanometre-scale precision. Nature 331: 450–453.PubMedCrossRefGoogle Scholar
  23. 23.
    Tan JL, Tien J, Pirone DM et al (2003) Cells lying on a bed of microneedles: An approach to isolate mechanical force. Proc Nat Acad Sci USA 100: 1484–1489.PubMedCrossRefGoogle Scholar
  24. 24.
    Wang YL, Pelham RJ (1998) Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Meth Enzymol 298: 489–496.PubMedCrossRefGoogle Scholar
  25. 25.
    Kandow CE, Georges PC, Janmey PA et al (2007) Polyacrylamidc hydrogels for cell mechanics: Steps toward optimization and alternative uses. Cell Mech 83: 29–46.CrossRefGoogle Scholar
  26. 26.
    J.Happel, H.Brenner (1983) Low Reynolds number hydrodynamics with special applications to particulate media. Kluwer, Boston.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Nicolas Biais
    • 1
  • Dustin Higashi
    • 2
  • Magdalene So
    • 2
  • Benoit Ladoux
    • 3
  1. 1.Department of Biological SciencesColumbia UniversityNew YorkUSA
  2. 2.Department of Immunobiology and the BIO5 InstituteUniversity of ArizonaTucsonUSA
  3. 3.Matières et Systèmes ComplexesCNRS UNR7057/Université Paris 7ParisFrance

Personalised recommendations