Neisseria meningitidis: Biology, Microbiology, and Epidemiology

  • Nadine G. Rouphael
  • David S. StephensEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 799)


Neisseria meningitidis (the meningococcus) causes significant morbidity and mortality in children and young adults worldwide through epidemic or sporadic meningitis and/or septicemia. In this review, we describe the biology, microbiology, and epidemiology of this exclusive human pathogen. N.meningitidis is a fastidious, encapsulated, aerobic gram-negative diplococcus. Colonies are positive by the oxidase test and most strains utilize maltose. The phenotypic classification of meningococci, based on structural differences in capsular polysaccharide, lipooligosaccharide (LOS) and outer membrane proteins, is now complemented by genome sequence typing (ST). The epidemiological profile of N. meningitidis is variable in different populations and over time and virulence of the meningococcus is based on a transformable/plastic genome and expression of certain capsular polysaccharides (serogroups A, B, C, W-135, Y and X) and non-capsular antigens. N. meningitidis colonizes mucosal surfaces using a multifactorial process involving pili, twitching motility, LOS, opacity associated, and other surface proteins. Certain clonal groups have an increased capacity to gain access to the blood, evade innate immune responses, multiply, and cause systemic disease. Although new vaccines hold great promise, meningococcal infection continues to be reported in both developed and developing countries, where universal vaccine coverage is absent and antibiotic resistance increasingly more common.

Key words

Neisseria meningitidis Pathogenesis Bacterial infections Microbiology Epidemiology 



We would like to thank Lane Pucko for her help in preparing this review. Research is supported by NIH/NIAID grants (R01 AI33517 and R01 AI40247) to D.S.S. and “Atlanta Clinical and Translational Science Institute” (UL1RR025008; KL2FF025009; TL1RR025010) and Georgia Research Alliance (GRA.VAC.09.K) grants to N.G.R. and D.S.S.


  1. 1.
    Weichselbaum A (1887) Ueber die Aetiologie der akuten meningitis cerebrospinalis. Fortschr Med 5:573.Google Scholar
  2. 2.
    Vieusseux M (1805) Mémoire sur la maladie qui a régné à Genéve au printemps de 1805. J Med Clin Pharm 11:163–82.Google Scholar
  3. 3.
    Danielson L, Mann E (1806) A history of a singular and very noted disease, which lately made its appearance in Medfield. Med Agricultural Reg 1:65–9.Google Scholar
  4. 4.
    Greenwood B (1999) Manson Lecture. Meningococcal meningitis in Africa. Trans R Soc Trop Med Hyg 93:341–53.PubMedCrossRefGoogle Scholar
  5. 5.
    Kiefer F (1896) Zur differential Diagnose des Erregers der epidemischen Cerebrospinalmeningitis und der Gonorrhoea Berl Klin Wochenschr 33:628.Google Scholar
  6. 6.
    Glover J (1918) The cerebrospinal fever epidemic of 1917 at “X” depot. J R Army Med Corps 30:23.Google Scholar
  7. 7.
    Flexner S (1913) The results if the serum treatment in thirteen hundred cases of epidemic meningitis. J Exp Med 17:553.PubMedCrossRefGoogle Scholar
  8. 8.
    Schwentker F, Gelman S, Long P (1937) The treatment of meningococcic meningitis with sulfonamide. Preliminary report. JAMA 108:1407.Google Scholar
  9. 9.
    Schoenback E, Phair J (1948) The sensitivity of meningococci to sulfadiazine. Am J Hyg 47:177–86.Google Scholar
  10. 10.
    Artenstein MS, Gold R, Zimmerly JG et al (1970) Prevention of meningococcal disease by group C polysaccharide vaccine. N Engl J Med 282:417–20.PubMedCrossRefGoogle Scholar
  11. 11.
    Stephens DS, Greenwood B, Brandtzaeg P (2007) Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet 369:2196–210.PubMedCrossRefGoogle Scholar
  12. 12.
    Sharip A, Sorvillo F, Redelings MD et al (2006) Population-based analysis of meningococcal disease mortality in the United States: 1990-2002. Pediatr Infect Dis J 25:191–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Rosenstein NE, Perkins BA, Stephens DS et al (2001) Meningococcal disease. N Engl J Med 344:1378–88.PubMedCrossRefGoogle Scholar
  14. 14.
    Stephens DS (2009) Biology and pathogenesis of the evolutionarily successful, obligate human bacterium Neisseria meningitidis. Vaccine 27 Suppl 2:B71–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Tettelin H, Saunders NJ, Heidelberg J et al (2000) Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287:1809–15.PubMedCrossRefGoogle Scholar
  16. 16.
    Parkhill J, Achtman M, James KD et al (2000) Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404:502–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Schoen C, Blom J, Claus H et al (2008) Whole-genome comparison of disease and carriage strains provides insights into virulence evolution in Neisseria meningitidis. Proc Natl Acad Sci USA 105:3473–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Hotopp JC, Grifantini R, Kumar N et al (2006) Comparative genomics of Neisseria meningitidis: core genome, islands of horizontal transfer and pathogen-specific genes. Microbiology 152:3733–49.CrossRefGoogle Scholar
  19. 19.
    Davidsen T, Tonjum T (2006) Meningococcal genome dynamics. Nat Rev Microbiol 4:11–22.PubMedCrossRefGoogle Scholar
  20. 20.
    Hilse R, Hammerschmidt S, Bautsch W et al (1996) Site-specific insertion of IS1301 and distribution in Neisseria meningitidis strains. J Bacteriol 178:2527–32.PubMedGoogle Scholar
  21. 21.
    Uria MJ, Zhang Q, Li Y et al (2008) A generic mechanism in Neisseria meningitidis for enhanced resistance against bactericidal antibodies. J Exp Med 205:1423–34.PubMedCrossRefGoogle Scholar
  22. 22.
    Goldschneider I, Gotschlich EC, Artenstein MS (1969) Human immunity to the meningococcus. I. The role of humoral antibodies. J Exp Med 129:1307–26.PubMedCrossRefGoogle Scholar
  23. 23.
    Goldschneider I, Gotschlich EC, Artenstein MS (1969) Human immunity to the meningococcus. II. Development of natural immunity. J Exp Med 129:1327–48.PubMedCrossRefGoogle Scholar
  24. 24.
    Snape MD, Pollard AJ (2005) Meningococcal polysaccharide-protein conjugate vaccines. Lancet Infect Dis 5:21–30.PubMedCrossRefGoogle Scholar
  25. 25.
    Blacklow RS, Warren L (1962) Biosynthesis of sialic acids by Neisseria meningitidis. J Biol Chem 237:3520–6.PubMedGoogle Scholar
  26. 26.
    Varki A (1997) Sialic acids as ligands in recognition phenomena. FASEB J 11:248–55.PubMedGoogle Scholar
  27. 27.
    Estabrook MM, Griffiss JM, Jarvis GA (1997) Sialylation of Neisseria meningitidis lipooligosaccharide inhibits serum bactericidal activity by masking lacto-N-neotetraose. Infect Immun 65:4436–44.PubMedGoogle Scholar
  28. 28.
    Kahler CM, Martin LE, Shih GC et al (1998) The (alpha2--  >  8)-linked polysialic acid capsule and lipooligosaccharide structure both contribute to the ability of serogroup B Neisseria meningitidis to resist the bactericidal activity of normal human serum. Infect Immun 66:5939–47.PubMedGoogle Scholar
  29. 29.
    Hobb RI, Tzeng YL, Choudhury BP et al (2010) Requirement of NMB0065 for connecting assembly and export of sialic acid capsular polysaccharides in Neisseria meningitidis. Microbes Infect 12:476–87.PubMedCrossRefGoogle Scholar
  30. 30.
    Zimmer SM, Stephens DS (2006) Serogroup B meningococcal vaccines. Curr Opin Investig Drugs 7:733–9.PubMedGoogle Scholar
  31. 31.
    Frosch M, Weisgerber C, Meyer TF (1989) Molecular characterization and expression in Escherichia coli of the gene complex encoding the polysaccharide capsule of Neisseria meningitidis group B. Proc Natl Acad Sci USA 86:1669–73.PubMedCrossRefGoogle Scholar
  32. 32.
    Swartley JS, Marfin AA, Edupuganti S, et al (1997) Capsule switching of Neisseria meningitidis. Proc Natl Acad Sci USA 94:271–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Aguilera JF, Perrocheau A, Meffre C et al (2002) Outbreak of serogroup W135 meningococcal disease after the Hajj pilgrimage, Europe, 2000. Emerg Infect Dis 8:761–7.PubMedGoogle Scholar
  34. 34.
    Raghunathan PL, Jones JD, Tiendrebeogo SR et al (2006) Predictors of immunity after a major serogroup W-135 meningococcal disease epidemic, Burkina Faso, 2002. J Infect Dis 193:607–16.PubMedCrossRefGoogle Scholar
  35. 35.
    Harrison LH, Shutt KA, Schmink SE et al (2010) Population structure and capsular switching of invasive Neisseria meningitidis isolates in the pre-meningococcal conjugate vaccine era-United States, 2000-2005. J Infect Dis 201:1208–24.PubMedCrossRefGoogle Scholar
  36. 36.
    Alonso JM, Gilmet G, Rouzic EM et al (2007) Workshop on vaccine pressure and Neisseria meningitidis, Annecy, France, 9–11 March 2005. Vaccine 25:4125–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Balmer P, Borrow R, Miller E (2002) Impact of meningococcal C conjugate vaccine in the UK. J Med Microbiol 51:717–22.PubMedGoogle Scholar
  38. 38.
    Nikaido H (1999) Microdermatology: cell surface in the interaction of microbes with the external world. J Bacteriol 181:4–8.PubMedGoogle Scholar
  39. 39.
    Rahman MM, Kolli VS, Kahler CM et al (2000) The membrane phospholipids of Neisseria meningitidis and Neisseria gonorrhoeae as characterized by fast atom bombardment mass spectrometry. Microbiology 146 (Pt 8):1901–11.PubMedGoogle Scholar
  40. 40.
    Antignac A, Rousselle JC, Namane A et al (2003) Detailed structural analysis of the peptidoglycan of the human pathogen Neisseria meningitidis. J Biol Chem 278:31521–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Quintela JC, Caparros M, de Pedro MA (1995) Variability of peptidoglycan structural parameters in gram-negative bacteria. FEMS Microbiol Lett 125:95–100.PubMedCrossRefGoogle Scholar
  42. 42.
    Clarke AJ, Dupont C (1992) O-acetylated peptidoglycan: its occurrence, pathobiological significance, and biosynthesis. Can J Microbiol 38:85–91.PubMedCrossRefGoogle Scholar
  43. 43.
    Girardin SE, Boneca IG, Viala J et al (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278:8869–72.PubMedCrossRefGoogle Scholar
  44. 44.
    Jennings HJ, Johnson KG, Kenne L (1983) The structure of an R-type oligosaccharide core obtained from some lipopolysaccharides of Neisseria meningitidis. Carbohydr Res 121:233–41.PubMedCrossRefGoogle Scholar
  45. 45.
    Gamian A, Beurret M, Michon F et al (1992) Structure of the L2 lipopolysaccharide core oligosaccharides of Neisseria meningitidis. J Biol Chem 267:922–5.PubMedGoogle Scholar
  46. 46.
    Kahler CM, Stephens DS (1998) Genetic basis for biosynthesis, structure, and function of meningococcal lipooligosaccharide (endotoxin). Crit Rev Microbiol 24:281–334.PubMedGoogle Scholar
  47. 47.
    Plant L, Sundqvist J, Zughaier S et al (2006) Lipooligosaccharide structure contributes to multiple steps in the virulence of Neisseria meningitidis. Infect Immun 74:1360–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Zughaier SM, Lindner B, Howe J et al (2007) Physicochemical characterization and biological activity of lipooligosaccharides and lipid A from Neisseria meningitidis. J Endotoxin Res 13:343–57.PubMedCrossRefGoogle Scholar
  49. 49.
    Mandrell RE, Griffiss JM, Macher BA (1988) Lipooligosaccharides (LOS) of Neisseria gonorrhoeae and Neisseria meningitidis have components that are immunochemically similar to precursors of human blood group antigens. Carbohydrate sequence specificity of the mouse monoclonal antibodies that recognize crossreacting antigens on LOS and human erythrocytes. J Exp Med 168:107–26.PubMedCrossRefGoogle Scholar
  50. 50.
    Jennings MP, Srikhanta YN, Moxon ER et al (1999) The genetic basis of the phase variation repertoire of lipopolysaccharide immunotypes in Neisseria meningitidis. Microbiology 145:3013–21.PubMedGoogle Scholar
  51. 51.
    Mandrell RE, Zollinger WD (1977) Lipopolysaccharide serotyping of Neisseria meningitidis by hemagglutination inhibition. Infect Immun 16:471–5.PubMedGoogle Scholar
  52. 52.
    Zughaier SM, Tzeng YL, Zimmer SM et al (2004) Neisseria meningitidis lipooligosaccharide structure-dependent activation of the macrophage CD14/Toll-like receptor 4 pathway. Infect Immun 72:371–80.PubMedCrossRefGoogle Scholar
  53. 53.
    Zughaier S, Steeghs L, van der Ley P et al (2007) TLR4-dependent adjuvant activity of Neisseria meningitidis lipid A. Vaccine 25:4401–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Braun JM, Blackwell CC, Poxton IR et al (2002) Proinflammatory responses to lipo-oligosaccharide of Neisseria meningitidis immunotype strains in relation to virulence and disease. J Infect Dis 185:1431–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Brandtzaeg P, Kierulf P, Gaustad P et al (1989) Plasma endotoxin as a predictor of multiple organ failure and death in systemic meningococcal disease. J Infect Dis 159:195–204.PubMedCrossRefGoogle Scholar
  56. 56.
    Brandtzaeg P, Bryn K, Kierulf P et al (1992) Meningococcal endotoxin in lethal septic shock plasma studied by gas chromatography, mass-spectrometry, ultracentrifugation, and electron microscopy. J Clin Invest 89:816–23.PubMedCrossRefGoogle Scholar
  57. 57.
    Greenfield S, Sheehe PR, Feldman HA (1971) Meningococcal carriage in a population of “normal” families. J Infect Dis 123:67–73.PubMedCrossRefGoogle Scholar
  58. 58.
    Stephens DS (1999) Uncloaking the meningococcus: dynamics of carriage and disease. Lancet 353:941–2.PubMedCrossRefGoogle Scholar
  59. 59.
    Caugant DA, Hoiby EA, Magnus P et al (1994) Asymptomatic carriage of Neisseria meningitidis in a randomly sampled population. J Clin Microbiol 32:323–30.PubMedGoogle Scholar
  60. 60.
    Pinner RW, Spellman PA, Stephens DS (1991) Evidence for functionally distinct pili expressed by Neisseria meningitidis. Infect Immun 59:3169–75.PubMedGoogle Scholar
  61. 61.
    Virji M, Alexandrescu C, Ferguson DJ et al (1992)Variations in the expression of pili: the effect on adherence of Neisseria meningitidis to human epithelial and endothelial cells. Mol Microbiol 6:1271–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Merz AJ, So M (2000) Interactions of pathogenic neisseriae with epithelial cell membranes. Annu Rev Cell Dev Biol 16:423–57.PubMedCrossRefGoogle Scholar
  63. 63.
    Stephens DS, McGee ZA (1981) Attachment of Neisseria meningitidis to human mucosal surfaces: influence of pili and type of receptor cell. J Infect Dis 143:525–32.PubMedCrossRefGoogle Scholar
  64. 64.
    Proft T, Baker EN (2009) Pili in Gram-negative and Gram-positive bacteria - structure, assembly and their role in disease. Cell Mol Life Sci 66:613–35.PubMedCrossRefGoogle Scholar
  65. 65.
    Kahler CM, Martin LE, Tzeng YL et al (2001) Polymorphisms in pilin glycosylation Locus of Neisseria meningitidis expressing class II pili. Infect Immun 69:3597–604.PubMedCrossRefGoogle Scholar
  66. 66.
    Marceau M, Forest K, Beretti JL et al (1998) Consequences of the loss of O-linked glycosylation of meningococcal type IV pilin on piliation and pilus-mediated adhesion. Mol Microbiol 27:705–15.PubMedCrossRefGoogle Scholar
  67. 67.
    Callaghan MJ, Jolley KA, Maiden MC (2006) Opacity-associated adhesin repertoire in hyperinvasive Neisseria meningitidis. Infect Immun 74:5085–94.PubMedCrossRefGoogle Scholar
  68. 68.
    Virji M, Watt SM, Barker S et al (1996) The N-domain of the human CD66a adhesion molecule is a target for Opa proteins of Neisseria meningitidis and Neisseria gonorrhoeae. Mol Microbiol 22:929–39.PubMedCrossRefGoogle Scholar
  69. 69.
    Virji M, Makepeace K, Ferguson DJ et al (1992) Expression of the Opc protein correlates with invasion of epithelial and endothelial cells by Neisseria meningitidis. Mol Microbiol 6:2785–95.PubMedCrossRefGoogle Scholar
  70. 70.
    Virji M, Evans D, Hadfield A et al (1999) Critical determinants of host receptor targeting by Neisseria meningitidis and Neisseria gonorrhoeae: identification of Opa adhesiotopes on the N-domain of CD66 molecules. Mol Microbiol 34:538–51.PubMedCrossRefGoogle Scholar
  71. 71.
    Hill DJ, Griffiths NJ, Borodina E et al (2010) Cellular and molecular biology of Neisseria meningitidis colonization and invasive disease. Clin Sci (Lond) 118:547–64.Google Scholar
  72. 72.
    Perkins-Balding D, Ratliff-Griffin M, Stojiljkovic I (2004) Iron transport systems in Neisseria meningitidis. Microbiol Mol Biol Rev 68:154–71.PubMedCrossRefGoogle Scholar
  73. 73.
    Schryvers AB, Stojiljkovic I (1999) Iron acquisition systems in the pathogenic Neisseria. Mol Microbiol 32:1117–23.PubMedCrossRefGoogle Scholar
  74. 74.
    Tzeng YL, Stephens DS (2000) Epidemiology and pathogenesis of Neisseria meningitidis. Microbes Infect 2:687–700.PubMedCrossRefGoogle Scholar
  75. 75.
    Massari P, Ram S, Macleod H et al (2003) The role of porins in neisserial pathogenesis and immunity. Trends Microbiol 11:87–93.PubMedCrossRefGoogle Scholar
  76. 76.
    Vermont CL, van Dijken HH, Kuipers AJ et al (2003) Cross-reactivity of antibodies against PorA after vaccination with a meningococcal B outer membrane vesicle vaccine. Infect Immun 71:1650–5.PubMedCrossRefGoogle Scholar
  77. 77.
    Rappuoli R (2001) Reverse vaccinology, a genome-based approach to vaccine development. Vaccine 19:2688–91.PubMedCrossRefGoogle Scholar
  78. 78.
    Frasch CE, Zollinger WD, Poolman JT (1985) Serotype antigens of Neisseria meningitidis and a proposed scheme for designation of serotypes. Rev Infect Dis 7:504–10.PubMedCrossRefGoogle Scholar
  79. 79.
    Slaterus KW (1961) Serological typing of meningococci by means of micro-precipitation. Antonie Van Leeuwenhoek 27:305–15.PubMedCrossRefGoogle Scholar
  80. 80.
    Branham S (1953) Serological relationships among meningococci. Bact Rev 17:175–88.PubMedGoogle Scholar
  81. 81.
    Vogel U (2010) Molecular epidemiology of meningococci: Application of DNA sequence typing. Int J Med Microbiol 300(7):415–20.PubMedCrossRefGoogle Scholar
  82. 82.
    Caugant DA, Froholm LO, Bovre K et al (1986) Intercontinental spread of a genetically distinctive complex of clones of Neisseria meningitidis causing epidemic disease. Proc Natl Acad Sci USA 83:4927–31.PubMedCrossRefGoogle Scholar
  83. 83.
    Bevanger L, Bergh K, Gisnas G et al (1998) Identification of nasopharyngeal carriage of an outbreak strain of Neisseria meningitidis by pulsed-field gel electrophoresis versus phenotypic methods. J Med Microbiol 47:993–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Weis N, Lind I (1998) Epidemiological markers in Neisseria meningitidis: an estimate of the performance of genotyping vs phenotyping. Scand J Infect Dis 30:69–75.PubMedCrossRefGoogle Scholar
  85. 85.
    Maiden MC, Bygraves JA, Feil E et al (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95:3140–5.PubMedCrossRefGoogle Scholar
  86. 86.
    Mothershed EA, Sacchi CT, Whitney AM et al (2004) Use of real-time PCR to resolve slide agglutination discrepancies in serogroup identification of Neisseria meningitidis. J Clin Microbiol 42:320–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Yazdankhah SP, Kriz P, Tzanakaki G et al (2004) Distribution of serogroups and genotypes among disease-associated and carried isolates of Neisseria meningitidis from the Czech Republic, Greece, and Norway. J Clin Microbiol 42:5146–53.PubMedCrossRefGoogle Scholar
  88. 88.
    Wu HM, Harcourt BH, Hatcher CP et al (2009) Emergence of ciprofloxacin-resistant Neisseria meningitidis in North America. N Engl J Med 360:886–92.PubMedCrossRefGoogle Scholar
  89. 89.
    Baart GJ, Zomer B, de Haan A et al (2007) Modeling Neisseria meningitidis metabolism: from genome to metabolic fluxes. Genome Biol 8:R136.PubMedCrossRefGoogle Scholar
  90. 90.
    Price ND, Papin JA, Schilling CH et al (2003) Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol 21:162–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Papin JA, Price ND, Wiback SJ et al (2003) Metabolic pathways in the post-genome era. Trends Biochem Sci 28:250–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Jyssum K, Borchgrevink B, Jyssum S (1961) Glucose catabolism in Neisseria meningitidis. 1. Glucose oxidation and intermediate reactions of the Embden-Meyerhof pathway. Acta Pathol Microbiol Scand 53:71–83.PubMedCrossRefGoogle Scholar
  93. 93.
    Frantz ID (1942) Growth requirements of the meningococcus. J Bacteriol 1942;43:757–61.Google Scholar
  94. 94.
    Chapin (1918) Carbon dioxide in the primary cultivation of the gonococcus. J Infect Dis 19:558–61.Google Scholar
  95. 95.
    Grossowicz N (1945) Growth requirements and metabolism of Neisseria intracellularis. J Bacteriol 50:109–15.PubMedGoogle Scholar
  96. 96.
    Erwin AL, Gotschlich EC (1996) Cloning of a Neisseria meningitidis gene for L-lactate dehydrogenase (L-LDH): evidence for a second meningococcal L-LDH with different regulation. J Bacteriol 178:4807–13.PubMedGoogle Scholar
  97. 97.
    Leighton MP, Kelly DJ, Williamson MP et al (2001) An NMR and enzyme study of the carbon metabolism of Neisseria meningitidis. Microbiology 147:1473–82.PubMedGoogle Scholar
  98. 98.
    Port JL, DeVoe IW, Archibald FS (1984) Sulphur acquisition by Neisseria meningitidis. Can J Microbiol 30:1453–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Cohn AC, MacNeil JR, Harrison LH et al (2010) Changes in Neisseria meningitidis disease epidemiology in the United States, 1998–2007: implications for prevention of meningococcal disease. Clin Infect Dis 50:184–91.PubMedCrossRefGoogle Scholar
  100. 100.
    Fischer M, Hedberg K, Cardosi P et al (1997) Tobacco smoke as a risk factor for meningococcal disease. Pediatr Infect Dis J 16:979–83.PubMedCrossRefGoogle Scholar
  101. 101.
    Jackson LA, Schuchat A, Reeves MW et al (1995) Serogroup C meningococcal outbreaks in the United States. An emerging threat. JAMA 273:383–9.Google Scholar
  102. 102.
    Rosenstein NE, Perkins BA, Stephens DS et al (1999) The changing epidemiology of meningococcal disease in the United States, 1992–1996. J Infect Dis 180:1894–901.PubMedCrossRefGoogle Scholar
  103. 103.
    Cartwright K, Noah N, Peltola H (2001) Meningococcal disease in Europe: epidemiology, mortality, and prevention with conjugate vaccines. Report of a European advisory board meeting Vienna, Austria, 6–8 October, 2000. Vaccine 19:4347–56.PubMedCrossRefGoogle Scholar
  104. 104.
    Trotter CL, Andrews NJ, Kaczmarski EB et al (2004) Effectiveness of meningococcal serogroup C conjugate vaccine 4 years after introduction. Lancet 364:365–7.PubMedCrossRefGoogle Scholar
  105. 105.
    Maiden MC, Ibarz-Pavon AB, Urwin R et al (2008) Impact of meningococcal serogroup C conjugate vaccines on carriage and herd immunity. J Infect Dis 197:737–43.PubMedCrossRefGoogle Scholar
  106. 106.
    Trotter CL, Ramsay ME (2007) Vaccination against meningococcal disease in Europe: review and recommendations for the use of conjugate vaccines. FEMS Microbiol Rev 31:101–7.PubMedCrossRefGoogle Scholar
  107. 107.
    Lepeyssonnie (1963) La méningite cérébrospinale en Afrique. Bull WHO 28:53–114.Google Scholar
  108. 108.
    Molesworth AM, Cuevas LE, Connor SJ et al (2003) Environmental risk and meningitis epidemics in Africa. Emerg Infect Dis 9:1287–93.PubMedGoogle Scholar
  109. 109.
    Greenwood BM, Bradley AK, Wall RA et al (1985) Meningococcal disease and season in sub-Saharan Africa. Lancet 2:829–30.PubMedCrossRefGoogle Scholar
  110. 110.
    Lewis R, Nathan N, Diarra L et al (2001) Timely detection of meningococcal meningitis epidemics in Africa. Lancet 358:287–93.PubMedCrossRefGoogle Scholar
  111. 111.
    Artenstein MS, Rust JH Jr., Hunter DH et al (1967) Acute respiratory disease and meningococcal infection in army recruits. JAMA 201:1004–7.PubMedCrossRefGoogle Scholar
  112. 112.
    Young LS, LaForce FM, Head JJ et al (1972) A simultaneous outbreak of meningococcal and influenza infections. N Engl J Med 287:5–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Safadi MA, Cintra OA (2010) Epidemiology of meningococcal disease in Latin America: current situation and opportunities for prevention. Neurol Res32:263–71.PubMedCrossRefGoogle Scholar
  114. 114.
    Wang JF, Caugant DA, Li X et al (1992) Clonal and antigenic analysis of serogroup A Neisseria meningitidis with particular reference to epidemiological features of epidemic meningitis in the People’s Republic of China. Infect Immun 60:5267–82.PubMedGoogle Scholar
  115. 115.
    Hart CA, Cuevas LE (1997) Meningococcal disease in Africa. Ann Trop Med Parasitol 91:777–85.PubMedCrossRefGoogle Scholar
  116. 116.
    Wyle FA, Artenstein MS, Brandt BL et al (1972) Immunologic response of man to group B meningococcal polysaccharide vaccines. J Infect Dis 126:514–21.PubMedCrossRefGoogle Scholar
  117. 117.
    Oster P, Lennon D, O’Hallahan J et al (2005) MeNZB: a safe and highly immunogenic tailor-made vaccine against the New Zealand Neisseria meningitidis serogroup B disease epidemic strain. Vaccine 23:2191–6.PubMedCrossRefGoogle Scholar
  118. 118.
    Rodriguez AP, Dickinson F, Baly A et al (1999) The epidemiological impact of antimeningococcal B vaccination in Cuba. Mem Inst Oswaldo Cruz 94:433–40.PubMedGoogle Scholar
  119. 119.
    Galloway Y, Stehr-Green P, McNicholas A et al (2009) Use of an observational cohort study to estimate the effectiveness of the New Zealand group B meningococcal vaccine in children aged under 5 years. Int J Epidemiol 38:413–8.PubMedCrossRefGoogle Scholar
  120. 120.
    Dull PM, Abdelwahab J, Sacchi CT et al (2005) Neisseria meningitidis serogroup W-135 carriage among US travelers to the 2001 Hajj. J Infect Dis 191:33–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Lingappa JR, Al-Rabeah AM, Hajjeh R et al (2003) Serogroup W-135 meningococcal disease during the Hajj, 2000. Emerg Infect Dis 9:665–71.PubMedGoogle Scholar
  122. 122.
    Wilder-Smith A, Goh KT, Barkham T et al (2003) Hajj-associated outbreak strain of Neisseria meningitidis serogroup W135: estimates of the attack rate in a defined population and the risk of invasive disease developing in carriers. Clin Infect Dis 36:679–83.PubMedCrossRefGoogle Scholar
  123. 123.
    Hahne SJ, Gray SJ, Jean F et al (2002) W135 meningococcal disease in England and Wales associated with Hajj 2000 and 2001. Lancet 359:582–3.PubMedCrossRefGoogle Scholar
  124. 124.
    Efron AM, Sorhouet C, Salcedo C et al (2009) W135 invasive meningococcal strains spreading in South America: significant increase in incidence rate in Argentina. J Clin Microbiol 47:1979–80.PubMedCrossRefGoogle Scholar
  125. 125.
    Koumare B, Ouedraogo-Traore R, Sanou I et al (2007) The first large epidemic of meningococcal disease caused by serogroup W135, Burkina Faso, 2002. Vaccine 25 Suppl 1:A37–41.PubMedCrossRefGoogle Scholar
  126. 126.
    Traore Y, Njanpop-Lafourcade BM, Adjogble KL et al (2006) The rise and fall of epidemic Neisseria meningitidis serogroup W135 meningitis in Burkina Faso, 2002-2005. Clin Infect Dis 43:817–22.PubMedCrossRefGoogle Scholar
  127. 127.
    Decosas J, Koama JB (2002) Chronicle of an outbreak foretold: meningococcal meningitis W135 in Burkina Faso. Lancet Infect Dis 2:763–5.PubMedCrossRefGoogle Scholar
  128. 128.
    Ouedraogo-Traore R, Hoiby EA, Sanou I et al (2002) Molecular characteristics of Neisseria meningitidis strains isolated in Burkina Faso in 2001. Scand J Infect Dis 34:804–7.PubMedCrossRefGoogle Scholar
  129. 129.
    Materu S, Cox HS, Isaakidis P et al (2007) Serogroup X in meningococcal disease, Western Kenya. Emerg Infect Dis 13:944–5.PubMedGoogle Scholar
  130. 130.
    Boisier P, Nicolas P, Djibo S et al (2007) Meningococcal meningitis: unprecedented incidence of serogroup X-related cases in 2006 in Niger. Clin Infect Dis 44:657–63.PubMedCrossRefGoogle Scholar
  131. 131.
    Gagneux SP, Hodgson A, Smith TA et al (2002) Prospective study of a serogroup X Neisseria meningitidis outbreak in northern Ghana. J Infect Dis 185:618–26.PubMedCrossRefGoogle Scholar
  132. 132.
    Harrison LH, Dwyer DM, Maples CT (1999) Risk of meningococcal infection in college students. JAMA 281:1906–10.PubMedCrossRefGoogle Scholar
  133. 133.
    Kaplan SL, Schutze GE, Leake JA et al (2006) Multicenter surveillance of invasive meningococcal infections in children. Pediatrics 118:e979–84.PubMedCrossRefGoogle Scholar
  134. 134.
    Shepard CW, Rosenstein NE, Fischer M (2003) Neonatal meningococcal disease in the United States, 1990 to 1999. Pediatr Infect Dis J 22:418–22.PubMedGoogle Scholar
  135. 135.
    Caugant DA (2008) Genetics and evolution of Neisseria meningitidis: importance for the epidemiology of meningococcal disease. Infect Genet Evol 8:558–65.PubMedCrossRefGoogle Scholar
  136. 136.
    Caugant DA, Maiden MCJ (2009) Meningococcal carriage and disease – population biology and evolution Vaccine 27:B64–B70.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Medicine, Division of Infectious DiseasesEmory University School of MedicineAtlantaUSA
  2. 2.Laboratories of Microbial Pathogenesis, AtlantaVA Medical CenterDecaturUSA

Personalised recommendations