Myogenesis pp 267-284 | Cite as

Recombinant Adeno-Associated Viral Vector Production and Purification

  • Jin-Hong Shin
  • Yongping Yue
  • Dongsheng Duan
Part of the Methods in Molecular Biology book series (MIMB, volume 798)


Gene delivery vectors based on recombinant adeno-associated virus (AAV) are powerful tools for studying myogenesis in normal and diseased conditions. Strategies have been developed to use AAV to increase, down-regulate, or modify expression of a particular muscle gene in a specific muscle, muscle group(s), or all muscles in the body. AAV-based muscle gene therapy has been shown to cure several inherited muscle diseases in animal models. Early clinical trials have also yielded promising results. In general, AAV vectors lead to robust, long-term in vivo transduction in rodents, dogs, and non-human primates. To meet specific research needs, investigators have developed numerous AAV variants by engineering viral capsid and/or genome. Here we outline a generic AAV production and purification protocol. Techniques described here are applicable to any AAV variant.

Key words

AAV Adeno-associated virus Muscle Gene therapy Gene transfer/delivery Serotype Muscular dystrophy Dystrophin Alkaline phosphatase 



The protocols were developed with the grant support from the National Institutes of Health (AR-49419 and HL-91883 to DD), the Muscular Dystrophy Association (DD), and the Parent Project for Muscular Dystrophy. We thank Duan lab members for helpful discussion.


  1. 1.
    Atchison, R. W., Casto, B. C., and Hammon, W. M. (1965) Adenovirus-Associated Defective Virus Particles. Science 149, 754–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Flotte, T. R., and Berns, K. I. (2005) Adeno-associated virus: a ubiquitous commensal of mammals. Hum Gene Ther 16, 401–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Schnepp, B. C., Jensen, R. L., Chen, C. L., Johnson, P. R., and Clark, K. R. (2005) Characterization of adeno-associated virus genomes isolated from human tissues. J Virol 79, 14793–803.PubMedCrossRefGoogle Scholar
  4. 4.
    Duan, D., Sharma, P., Yang, J., Yue, Y., Dudus, L., Zhang, Y., Fisher, K. J., and Engelhardt, J. F. (1998) Circular Intermediates of Recombinant Adeno–Associated Virus have Defined Structural Characteristics Responsible for Long Term Episomal Persistence in Muscle. J Virol 72, 8568–77.PubMedGoogle Scholar
  5. 5.
    Huser, D., Gogol-Doring, A., Lutter, T., Weger, S., Winter, K., Hammer, E. M., Cathomen, T., Reinert, K., and Heilbronn, R. (2010) Integration preferences of wildtype AAV-2 for consensus rep-binding sites at numerous loci in the human genome. PLoS Pathog 6, e1000985.PubMedCrossRefGoogle Scholar
  6. 6.
    Senapathy, P., and Carter, B. J. (1984) Molecular cloning of adeno-associated virus variant genomes and generation of infectious virus by recombination in mammalian cells. J Biol Chem 259, 4661–6.PubMedGoogle Scholar
  7. 7.
    Samulski, R. J., Srivastava, A., Berns, K. I., and Muzyczka, N. (1983) Rescue of adeno-associated virus from recombinant plasmids: gene correction within the terminal repeats of AAV. Cell 33, 135–43.PubMedCrossRefGoogle Scholar
  8. 8.
    Carter, B. J. (2004) Adeno-associated virus and the development of adeno-associated virus vectors: a historical perspective. Mol Ther 10, 981–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Mendell, J. R., Rodino-Klapac, L. R., Rosales-Quintero, X., Kota, J., Coley, B. D., Galloway, G., Craenen, J. M., Lewis, S., Malik, V., Shilling, C., Byrne, B. J., Conlon, T., Campbell, K. J., Bremer, W. G., Viollet, L., Walker, C. M., Sahenk, Z., and Clark, K. R. (2009) Limb-girdle muscular dystrophy type 2D gene therapy restores alpha-sarcoglycan and associated proteins. Ann Neurol 66, 290–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Maguire, A. M., Simonelli, F., Pierce, E. A., Pugh, E. N., Jr., Mingozzi, F., Bennicelli, J., Banfi, S., Marshall, K. A., Testa, F., Surace, E. M., Rossi, S., Lyubarsky, A., Arruda, V. R., Konkle, B., Stone, E., Sun, J., Jacobs, J., Dell’Osso, L., Hertle, R., Ma, J. X., Redmond, T. M., Zhu, X., Hauck, B., Zelenaia, O., Shindler, K. S., Maguire, M. G., Wright, J. F., Volpe, N. J., McDonnell, J. W., Auricchio, A., High, K. A., and Bennett, J. (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358, 2240–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Cideciyan, A. V., Hauswirth, W. W., Aleman, T. S., Kaushal, S., Schwartz, S. B., Boye, S. L., Windsor, E. A., Conlon, T. J., Sumaroka, A., Roman, A. J., Byrne, B. J., and Jacobson, S. G. (2009) Vision 1 year after gene therapy for Leber’s congenital amaurosis. N Engl J Med 361, 725–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Bainbridge, J. W., Smith, A. J., Barker, S. S., Robbie, S., Henderson, R., Balaggan, K., Viswanathan, A., Holder, G. E., Stockman, A., Tyler, N., Petersen-Jones, S., Bhattacharya, S. S., Thrasher, A. J., Fitzke, F. W., Carter, B. J., Rubin, G. S., Moore, A. T., and Ali, R. R. (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358, 2231–9.PubMedCrossRefGoogle Scholar
  13. 13.
    McCarty, D. M. (2008) Self-complementary AAV vectors; advances and applications. Mol Ther 16, 1648–56.PubMedCrossRefGoogle Scholar
  14. 14.
    Zhou, X., Zeng, X., Fan, Z., Li, C., McCown, T., Samulski, R. J., and Xiao, X. (2008) Adeno-associated virus of a single-polarity DNA genome is capable of transduction in vivo. Mol Ther 16, 494–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhong, L., Zhou, X., Li, Y., Qing, K., Xiao, X., Samulski, R. J., and Srivastava, A. (2008) Single-polarity Recombinant Adeno-associated Virus 2 Vector-mediated Transgene Expression In Vitro and In Vivo: Mechanism of Transduction. Mol Ther 16, 290–95.PubMedCrossRefGoogle Scholar
  16. 16.
    Ghosh, A., Yue, Y., Lai, Y., and Duan, D. (2008) A hybrid vector system expands aden-associated viral vector packaging capacity in a transgene independent manner. Mol Ther 16, 124–30.PubMedCrossRefGoogle Scholar
  17. 17.
    Kwon, I., and Schaffer, D. V. (2008) Designer gene delivery vectors: molecular engineering and evolution of adeno-associated viral vectors for enhanced gene transfer. Pharm Res 25, 489–99.PubMedCrossRefGoogle Scholar
  18. 18.
    Vandenberghe, L. H., Wilson, J. M., and Gao, G. (2009) Tailoring the AAV vector capsid for gene therapy. Gene Ther 16, 311–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Wu, Z., Asokan, A., and Samulski, R. J. (2006) Adeno-associated Virus Serotypes: Vector Toolkit for Human Gene Therapy. Mol Ther 14, 316–27.PubMedCrossRefGoogle Scholar
  20. 20.
    Gao, G., Vandenberghe, L. H., and Wilson, J. M. (2005) New recombinant serotypes of AAV vectors. Curr Gene Ther 5, 285–97.PubMedCrossRefGoogle Scholar
  21. 21.
    Virag, T., Cecchini, S., and Kotin, R. M. (2009) Producing recombinant adeno-associated virus in foster cells: overcoming production limitations using a baculovirus-insect cell expression strategy. Hum Gene Ther 20, 807–17.PubMedCrossRefGoogle Scholar
  22. 22.
    Clement, N., Knop, D. R., and Byrne, B. J. (2009) Large-scale adeno-associated viral vector production using a herpesvirus-based system enables manufacturing for clinical studies. Hum Gene Ther 20, 796–806.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang, H., Xie, J., Xie, Q., Wilson, J. M., and Gao, G. (2009) Adenovirus-adeno-associated virus hybrid for large-scale recombinant adeno-associated virus production. Hum Gene Ther 20, 922–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Zolotukhin, S. (2005) Production of recombinant adeno-associated virus vectors. Hum Gene Ther 16, 551–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Cecchini, S., Negrete, A., and Kotin, R. M. (2008) Toward exascale production of recombinant adeno-associated virus for gene transfer applications. Gene Ther 15, 823–30.PubMedCrossRefGoogle Scholar
  26. 26.
    Thorne, B. A., Takeya, R. K., and Peluso, R. W. (2009) Manufacturing recombinant adeno-associated viral vectors from producer cell clones. Hum Gene Ther 20, 707–14.PubMedCrossRefGoogle Scholar
  27. 27.
    Wright, J. F. (2009) Transient transfection methods for clinical adeno-associated viral vector production. Hum Gene Ther 20, 698–706.PubMedCrossRefGoogle Scholar
  28. 28.
    Graham, F. L., Smiley, J., Russell, W. C., and Nairn, R. (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36, 59–74.PubMedCrossRefGoogle Scholar
  29. 29.
    Louis, N., Evelegh, C., and Graham, F. L. (1997) Cloning and sequencing of the cellular-viral junctions from the human adenovirus type 5 transformed 293 cell line. Virology 233, 423–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Duan, D., Fisher, K. J., Burda, J. F., and Engelhardt, J. F. (1997) Structural and functional heterogeneity of integrated recombinant AAV genomes. Virus Res 48, 41–56.PubMedCrossRefGoogle Scholar
  31. 31.
    Katano, H., Afione, S., Schmidt, M., and Chiorini, J. A. (2004) Identification of adeno-associated virus contamination in cell and virus stocks by PCR. Biotechniques 36, 676–80.PubMedGoogle Scholar
  32. 32.
    Heilig, J. S., Elbing, K. L., and Brent, R. (2001) Large-scale preparation of plasmid DNA. Curr Protoc Mol Biol Chapter 1, Unit1 7.Google Scholar
  33. 33.
    Matsushita, T., Elliger, S., Elliger, C., Podsakoff, G., Villarreal, L., Kurtzman, G. J., Iwaki, Y., and Colosi, P. (1998) Adeno-associated virus vectors can be efficiently produced without helper virus. Gene Ther 5, 938–45.PubMedCrossRefGoogle Scholar
  34. 34.
    Grimm, D., Kay, M. A., and Kleinschmidt, J. A. (2003) Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol Ther 7, 839–50.PubMedCrossRefGoogle Scholar
  35. 35.
    Grimm, D., Kern, A., Rittner, K., and Kleinschmidt, J. A. (1998) Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum Gene Ther 9, 2745–60.PubMedCrossRefGoogle Scholar
  36. 36.
    Xiao, X., Li, J., and Samulski, R. J. (1998) Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 72, 2224–32.PubMedGoogle Scholar
  37. 37.
    Duan, D., Yan, Z., Yue, Y., Ding, W., and Engelhardt, J. F. (2001) Enhancement Of Muscle Gene Delivery With Pseudotyped AAV-5 Correlates With Myoblast Differentiation. J Virol 75, 7662–71.PubMedCrossRefGoogle Scholar
  38. 38.
    Yan, Z., Zak, R., Luxton, G. W., Ritchie, T. C., Bantel-Schaal, U., and Engelhardt, J. F. (2002) Ubiquitination of both adeno-associated virus type 2 and 5 capsid proteins affects the transduction efficiency of recombinant vectors. J Virol 76, 2043–53.PubMedCrossRefGoogle Scholar
  39. 39.
    Allen, J. M., Halbert, C. L., and Miller, A. D. (2000) Improved adeno-associated virus ­vector production with transfection of a single helper adenovirus gene, E4orf6. Mol Ther 1, 88–95.PubMedCrossRefGoogle Scholar
  40. 40.
    Vandenberghe, L. H., Xiao, R., Lock, M., Lin, J., Korn, M., and Wilson, J. M. (2010) Efficient serotype-dependent release of functional vector into the culture medium during AAV manufacturing. Hum Gene Ther 21, 1251–7.Google Scholar
  41. 41.
    de la Maza, L. M., and Carter, B. J. (1980) Molecular structure of adeno-associated virus variant DNA. J Biol Chem 255, 3194–203.PubMedGoogle Scholar
  42. 42.
    Torikai, K., Ito, M., Jordan, L. E., and Mayor, H. D. (1970) Properties of light particles produced during growth of Type 4 adeno-associated satellite virus. J Virol 6, 363–9.PubMedGoogle Scholar
  43. 43.
    Lipps, B. V., and Mayor, H. D. (1982) Characterization of heavy particles of adeno-associated virus type 1. J Gen Virol 58 Pt 1, 63–72.PubMedCrossRefGoogle Scholar
  44. 44.
    de la Maza, L. M., and Carter, B. J. (1980) Heavy and light particles of adeno-associated virus. J Virol 33, 1129–37.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Molecular Microbiology and Immunology, School of MedicineUniversity of MissouriColumbiaUSA

Personalised recommendations