Wang L, Schultz PG (2005) Expanding the genetic code. Angew Chemie Int Ed 44, 34–66.
CrossRef
CAS
Google Scholar
Wang L, Xie J, Schultz PG (2006) Expanding the genetic code. Ann Rev Biophys Biomol Struc 35, 225–249.
CrossRef
Google Scholar
Budisa N (2004) Prolegomena to future experimental efforts on genetic code engineering by expanding its amino acid repertoire. Ang Chemie Int Ed 116, 6426–6463.
CrossRef
Google Scholar
Dougherty DA (2000) Unnatural amino acids as probes of protein structure and function. Curr Opin Chem Biol 4, 645–652.
PubMed
CrossRef
CAS
Google Scholar
Xie J, Schultz PG (2005) Adding amino acids to the genetic repertoire Curr Opin Chem Biol 9, 548–554.
CAS
Google Scholar
Link AJ, Mock ML, Tirrell DA (2003) Non-canonical amino acids in protein engineering. Curr Opin Biotechn 14, 603–609.
CrossRef
CAS
Google Scholar
Gerrits M et al., (2007) In: Cell-Free Protein Expression, Landes Bioscience, Austin, 2007.
Google Scholar
Prescher JA, Bertozzi CR (2005) Chemistry in living systems. Nat Chem Biol 1, 13–21.
PubMed
CrossRef
CAS
Google Scholar
Rostovtsev VV et al. (2002) A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 2002, 41, 2596–2599.
CrossRef
CAS
Google Scholar
Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67, 3057–3064.
PubMed
CrossRef
Google Scholar
Codelli JA et al. (2008) Second-generation difluorinated cyclooctynes for copper-free click chemistry. J Am Chem Soc 130, 11486–11493.
PubMed
CrossRef
CAS
Google Scholar
Ning X, Guo J, Wolfert MA, Boons G-J (2008) Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast huisgen cycloadditions. Angew Chem Int Ed 47, 2253–2255.
CrossRef
CAS
Google Scholar
Debets MF et al. (2010) Aza-dibenzo-cyclooctynes for fast and efficient enzyme PEGylation via copper-free (3 + 2) cycloaddition. Chem Commun 46, 97–99.
CrossRef
CAS
Google Scholar
Saxon E, Bertozzi CR (2000) Cell surface engineering by a modified Staudinger reaction. Science 287, 2007–2010.
PubMed
CrossRef
CAS
Google Scholar
Prescher JA, Dube DH, Bertozzi CR (2004) Chemical remodelling of cell surfaces in living animals. Nature 430, 873–877.
PubMed
CrossRef
CAS
Google Scholar
Agard NJ et al. (2006) A comparative study of bioorthogonal reactions with azides. ACS Chemical Biology 1, 644–648.
PubMed
CrossRef
CAS
Google Scholar
Böhrsch V et al. (2010) Site-specific functionalisation of proteins by a Staudinger-type reaction using unsymmetrical phosphites. Chem Commun 46, 3176–8.
CrossRef
Google Scholar
Serwa R et al. (2010) Site-specific PEGylation of proteins by a Staudinger-phosphite reaction. Chemical Science, 596–602.
Google Scholar
Serwa R et al. (2009) Chemoselective Staudinger-phosphite reaction of azides for the phosphorylation of proteins. Angew Chem Int Ed 48, 8234–8139.
CrossRef
CAS
Google Scholar
Veronese FM (2001) Peptide and protein PEGylation: a review of problems and solutions. Biomaterials 22, 405–417.
PubMed
CrossRef
CAS
Google Scholar
Veronese FM, Mero A (2008) The impact of PEGylation on biological therapies. Biodrugs 22, 315–329.
PubMed
CrossRef
CAS
Google Scholar
Roberts MJ, Bentley MD, Harris JM (2002) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 54, 459–476.
PubMed
CrossRef
CAS
Google Scholar
Caliceti P, Veronese FM (2003) Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates Adv Drug Deliv Rev 55, 1261–1277.
Google Scholar