Modeling Dopamine Neuron Degeneration in Caenorhabditis elegans

  • Michelle L. Tucci
  • Adam J. Harrington
  • Guy A. CaldwellEmail author
  • Kim A. Caldwell
Part of the Methods in Molecular Biology book series (MIMB, volume 793)


Ongoing investigations into causes and cures for human movement disorders are important toward the elucidation of diseases, such as Parkinson’s disease (PD). The use of animal model systems can provide links to susceptibility factors as well as therapeutic interventions. In this regard, the nematode roundworm, Caenorhabditis elegans, is ideal for age-dependent neurodegenerative disease studies. It is genetically tractable, has a short life span, and a well-defined nervous system. Fluorescent markers, like GFP, are readily visualized in C. elegans as it is a transparent organism; thus the nervous system, and factors that alter the viability of neurons, can be directly examined in vivo. Through expression of the human disease protein, alpha-synuclein, in the worm dopamine neurons, neurodegeneration is observed in an age-dependent manner. Furthermore, application of a dopamine neurotoxin, 6-hydroxy-dopamine, provides another independent model of PD. Described herein are techniques for C. elegans transformation to evaluate candidate neuroprotective gene targets, integration of the extrachromosomal arrays, genetic crosses, and methods for dopamine neuron analysis that are applicable to both types of neurotoxicity. These techniques can be exploited to assess both chemical and genetic modifiers of toxicity, providing additional avenues to advance PD-related discoveries.

Key words

Caenorhabditis elegans Parkinson’s disease Alpha-synuclein Dopamine Neurodegeneration Neurotoxicity 



We would like to thank all members of the Caldwell laboratory, especially Songsong Cao, Shusei Hamamichi, and Laura Berkowitz, for their contributions to the development of the methods described herein. Research on movement disorders in the Caldwell lab is supported by grants from the Howard Hughes Medical Institute (GAC), National Science Foundation (KAC), and QRxPharma, Ltd. (GAC and KAC).


  1. 1.
    Dauer W and Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909.PubMedCrossRefGoogle Scholar
  2. 2.
    Fahn S (2003) Description of Parkinson’s disease as a clinical syndrome. Ann N Y Acad Sci 991:1–14.PubMedCrossRefGoogle Scholar
  3. 3.
    Caldwell GA and Caldwell KA (2008) Traversing a wormhole to combat Parkinson’s disease. Dis Model Mech 1:326.PubMedCrossRefGoogle Scholar
  4. 4.
    Cao S, Gelwix CC, Caldwell KA, and Caldwell GA (2005) Torsin-mediated neuroprotection from cellular stresses to dopaminergic neurons of Caenorhabditis elegans. J Neurosci 25:3801–12.PubMedCrossRefGoogle Scholar
  5. 5.
    Nass R, Hall DH, Miller DM III, and Blakely RD (2002) Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc Natl Acad Sci USA 99:3264–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Hamamichi S, Rivas RN, Knight AL, Cao S, Caldwell KA, Caldwell GA (2008) Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson’s disease model. Proc Natl Acad Sci USA 105:728–33.PubMedCrossRefGoogle Scholar
  7. 7.
    Harrington AJ, Hamamichi S, Caldwell GA, and Caldwell KA (2010) C. elegans as a model organism to investigate molecular pathways involved with Parkinson’s disease. Dev Dyn 239:1282–95.PubMedCrossRefGoogle Scholar
  8. 8.
    Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, et al (2003) Alpha-synuclein locus triplication causes Parkinson’s disease. Science 302:841.PubMedCrossRefGoogle Scholar
  9. 9.
    Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–7PubMedCrossRefGoogle Scholar
  10. 10.
    Cao P, Yuan Y, Pehek EA, Moise AR, Huang Y, et al (2010) Alpha-synuclein disrupted dopamine homeostasis leads to dopaminergic neuron degeneration in Caenorhabditis elegans. PLoS ONE 5:e9312.PubMedCrossRefGoogle Scholar
  11. 11.
    Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, et al (2006) Alpha-synuclein blocks ER-Golgi traffic and rab1 rescues neuron loss in Parkinson’s models. Science 313:324–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Kuwahara T, Koyama A, Gengyo-Ando K, Masuda M, Kowa H, et al (2006) Familial Parkinson mutant alpha-synuclein causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans. J Biol Chem 281:334–40.PubMedCrossRefGoogle Scholar
  13. 13.
    van Ham TJ, Thijssen KL, Breitling R, Hofstra RM, Plasterk RH, and Nollen EA (2008) C. elegans model identifies modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet 4:e1000027.PubMedCrossRefGoogle Scholar
  14. 14.
    Kuwahara T, Koyama A, Koyama S, Yoshina S, Ren CH, et al (2008) A systematic RNAi screen reveals involvement of endocytic pathway in neuronal dysfunction in alpha-synuclein transgenic C. elegans. Hum Mol Genet 17:2997–3009.PubMedCrossRefGoogle Scholar
  15. 15.
    Wilm T, Demel P, Koop HU, Schnabel H, Schnabel R (1999) Ballistic transformation of Caenorhabditis elegans. Gene 229: 31–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Lamesch P, Milstein S, Hao T, Rosenberg J, Li N, et al (2004) C. elegans ORFeome Version 3.1: Increasing the coverage of ORFeome resources with improved gene predictions. Genome Res 14:2064–9.PubMedCrossRefGoogle Scholar
  17. 17.
  18. 18.
    Berkowitz LA, Knight AL, Caldwell GA, and Caldwell KA (2008) Generation of stable transgenic C. elegans using microinjection. JoVE 18:  pii: 833. doi:  10.3791/833
  19. 19.
    Mello CC, Kramer, JM, Stinchcomb D, Ambros V (1991) Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10: 3959–70.PubMedGoogle Scholar
  20. 20.
    Berkowitz LA, Hamamichi S, Knight AL, Harrington AJ, Caldwell GA, and Caldwell KA (2008) Application of a C. elegans dopamine neuron degeneration assay for the validation of potential Parkinson’s disease genes. JoVE 17:pii: 835. doi:  10.3791/835.
  21. 21.
    Caldwell GA, Williams SN, and Caldwell KA (2006) Integrated Genomics: A discovery-based laboratory course. John Wiley & Sons, Ltd, Chichester, England:1–225.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Michelle L. Tucci
    • 1
  • Adam J. Harrington
    • 1
  • Guy A. Caldwell
    • 1
    • 2
    • 3
    Email author
  • Kim A. Caldwell
    • 1
    • 2
    • 3
  1. 1.Department of Biological SciencesThe University of AlabamaTuscaloosaUSA
  2. 2.Department of NeurologyUniversity of Alabama at BirminghamBirminghamUSA
  3. 3.Department of Neurobiology, Center for Neurodegeneration and Experimental TherapeuticsUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations