Methylated DNA Immunoprecipitation Genome-Wide Analysis

  • Mattia Pelizzola
  • Annette Molinaro
Part of the Methods in Molecular Biology book series (MIMB, volume 791)


DNA methylation is an important and potentially heritable component of the epigenetic machinery that has a major role in the control of gene expression and can be deregulated in many diseases. This modification of genomic DNA can be assessed using the methylated DNA immunoprecipitation (MeDIP) method, based on the quantification of methylated DNA fragments enriched using an antibody specific for methyl-cytosines.

The relationship between the enrichment level and the real DNA methylation status is complex, and only a few methods have been developed to evaluate MeDIP enrichment measures to estimate the absolute or relative number of methyl-cytosines in a given sample. Two such methods are MEDME and BATMAN. This chapter focuses on the description and use of the former with a brief discussion of the latter.

Key words

DNA methylation Epigenetics MeDIP MEDME 


  1. 1.
    Suzuki, M. M., and Bird, A. (2008) DNA methylation landscapes: provocative insights from epigenomics, Nat Rev Genet 9, 465–476.PubMedCrossRefGoogle Scholar
  2. 2.
    Barski, A., Cuddapah, S., Cui, K., Roh, T., Schones, D., Wang, Z., Wei, G., Chepelev, I., and Zhao, K. (2007) High-resolution profiling of histone methylations in the human genome, Cell 129, 823–837.PubMedCrossRefGoogle Scholar
  3. 3.
    Esteller, M. (2008) Epigenetics in cancer, The New England journal of medicine 358, 1148–1159.PubMedCrossRefGoogle Scholar
  4. 4.
    Lister, R., O’Malley, R. C., Tonti-Filippini, J., Gregory, B. D., Berry, C. C., Millar, A. H., and Ecker, J. R. (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis, Cell 133, 523–536.PubMedCrossRefGoogle Scholar
  5. 5.
    Lister, R., Pelizzola, M., Dowen, R. H., Hawkins, R. D., Hon, G., Tonti-Filippini, J., Nery, J. R., Lee, L., Ye, Z., Ngo, Q., Edsall, L., Antosiewicz-Bourget, J., Stewart, R., Ruotti, V., Millar, A. H., Thomson, J. A., Ren, B., and Ecker, J. R. (2009) Human DNA methylomes at base resolution show widespread epigenomic differences, Nature 462, 315–322.PubMedCrossRefGoogle Scholar
  6. 6.
    Laird, P. (2010) Principles and challenges of genome-wide DNA methylation analysis, Nat Rev Genet 11, 191.PubMedCrossRefGoogle Scholar
  7. 7.
    Weber, M., Davies, J. J., Wittig, D., Oakeley, E. J., Haase, M., Lam, W., and Schübeler, D. (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells, Nat Genet 37, 853–862.PubMedCrossRefGoogle Scholar
  8. 8.
    Weber, M., Hellmann, I., Stadler, M. B., Ramos, L., Pääbo, S., Rebhan, M., and Schübeler, D. (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome, Nat Genet 39, 457–466.PubMedCrossRefGoogle Scholar
  9. 9.
    Down, T., Rakyan, V., Turner, D., Flicek, P., Li, H., Kulesha, E., Gräf, S., Johnson, N., Herrero, J., Tomazou, E., Thorne, N., Bäckdahl, L., Herberth, M., Howe, K., Jackson, D., Miretti, M., Marioni, J., Birney, E., Hubbard, T., Durbin, R., Tavaré, S., and Beck, S. (2008) A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis, Nat Biotechnol 26, 779–785.PubMedCrossRefGoogle Scholar
  10. 10.
    Pelizzola, M., Koga, Y., Urban, A., Krauthammer, M., Weissman, S., Halaban, R., and Molinaro, A. (2008) MEDME: An experimental and analytical methodology for the estimation of DNA methylation levels based on microarray derived MeDIP-enrichment, Genome Research 18, 1652–1659.PubMedCrossRefGoogle Scholar
  11. 11.
    Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A. J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, J. Y., and Zhang, J. (2004) Bioconductor: open software development for computational biology and bioinformatics, Genome Biol 5, R80.PubMedCrossRefGoogle Scholar
  12. 12.
    Koga, Y., Pelizzola, M., Cheng, E., Krauthammer, M., Sznol, M., Ariyan, S., Narayan, D., Molinaro, A., Halaban, R., and Weissman, S. (2009) Genome-wide screen of promoter methylation identifies novel markers in melanoma, Genome Research 19, 1462–1470.PubMedCrossRefGoogle Scholar
  13. 13.
    Harris, R. A., Wang, T., Coarfa, C., Nagarajan, R. P., Hong, C., Downey, S. L., Johnson, B. E., Fouse, S. D., Delaney, A., Zhao, Y., Olshen, A., Ballinger, T., Zhou, X., Forsberg, K. J., Gu, J., Echipare, L., O’Geen, H., Lister, R., Pelizzola, M., Xi, Y., Epstein, C. B., Bernstein, B. E., Hawkins, R. D., Ren, B., Chung, W. Y., Gu, H., Bock, C., Gnirke, A., Zhang, M. Q., Haussler, D., Ecker, J. R., Li, W., Farnham, P. J., Waterland, R. A., Meissner, A., Marra, M. A., Hirst, M., Milosavljevic, A., and Costello, J. F. (2010) Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications, Nat Biotechnol 26, 1097–1105.Google Scholar
  14. 14.
    Barres, R., Osler, M. E., Yan, J., Rune, A., Fritz, T., Caidahl, K., Krook, A., and Zierath, J. R. (2009) Non-CpG Methylation of the PGC-1α Promoter through DNMT3B Controls Mitochondrial Density, Cell Metabolism 10, 189–198.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Genomic Analysis LabSalk Institute for Biological StudiesLa JollaUSA
  2. 2.Department of Epidemiology and Public HealthYale University School of MedicineNew HavenUSA

Personalised recommendations