The Four-Plate Test in Mice

Part of the Neuromethods book series (NM, volume 63)


The four-plate test (FPT) is an animal model of anxiety based on spontaneous response. Animals are exposed to a novel environment. The exploration of this novel surrounding is suppressed by the delivery of mild electric foot shock contingent to quadrant crossing. Animal can only escape from this aversive situation by remaining motionless (passive avoidance). This model of conditioned fear presents several advantages. It is a simple and quick procedure and there is no need for prior training of animals. In this test, benzodiazepines (BZDs) induce a strong antipunishment effect, which has been proposed to be a reflection of their anxiolytic activity. The FPT also allows the detection of anxiolytic effects of other non-BZD anxiolytic compounds such as selective serotonin (5-HT) reuptake inhibitors (SSRI) or mixed serotonin and noradrenaline (NA) reuptake inhibitors (SNRI).

Key words

Anxiolytics Four-plate test Mice Animal model Receptor ligands 


  1. 1.
    Boissier JR, Simon P, Aron C (1968) A new method for rapid screening of minor tranquillizers in mice. Eur J Pharmacol 4:145–151PubMedCrossRefGoogle Scholar
  2. 2.
    Liao JF, Hung WY, Chen CF (2003) Anxiolytic-like effects of baicalein and baicalin in the vogel conflict test in mice. Eur J Pharmacol 464:141–146PubMedCrossRefGoogle Scholar
  3. 3.
    Umezu T (1999) Effects of psychoactive drugs in the vogel test in mice. Jpn J Pharmacol 80:111–118PubMedCrossRefGoogle Scholar
  4. 4.
    Bourin M, Hascoët M, Mansouri B, Colombel MC, Bradwejn J (1992) Comparison of behavioral effects after single and repeated administrations of four benzodiazepines in three mice behavioral models. J Psychiatry Neurosci 17:72–77PubMedGoogle Scholar
  5. 5.
    Hascoët M and Bourin M (1997) Anticonflict effect of alpidem as compared with the benzodiazepine alprazolam in Rats. Pharmacol Biochem Behav 2:317–324CrossRefGoogle Scholar
  6. 6.
    Jones GH, Schneider C, Schneider HH, Seidler J, Cole BJ and Stephens DN (1994) Comparison of several benzodiazepine receptor ligands in two models of anxiolytic activity in the mouse: an analysis based on fractional receptor occupancies. Psychopharmacol (Ber) 114:191–199CrossRefGoogle Scholar
  7. 7.
    Sills GJ (2006) The mechanisms of action of gabapentine and pregabalin. Curr Opin Pharmacol. 6:108–113PubMedCrossRefGoogle Scholar
  8. 8.
    Taylor CP, Gee NS, Su TZ, Kocsis JD, Welty DF, Brown JP, Dooley DJ, Boden P, Singh L (1998) A summary of mechanistic hypotheses of gabapentine pharmacology. Epilepsy Res 29:233–249PubMedCrossRefGoogle Scholar
  9. 9.
    Götz E, Feuerstein TJ, Lais A, Meyer DK (1993) Effects of gabapentine on release of gamma-aminobutyric acid from slices of rat neostriatum. Arzneimittelforschung 43:636–638PubMedGoogle Scholar
  10. 10.
    Roberto M, Gilpin NW, O’Dell LE, Cruz MT, Morse AC, Siggins GR, Koob GF (2008) Cellular and behavioral interactions of gabapentine with alcohol dependence. J Neurosci 28:5762–5771PubMedCrossRefGoogle Scholar
  11. 11.
    Partyka A, Kłodzińska A, Szewczyk B, Wierońska JM, Chojnacka-Wójcik E, Librowski T, Filipek B, Nowak G, Pilc A (2007) Effects of GABAB receptor ligands in rodent tests of anxiety-like behavior. Pharmacol Rep 59:757–762PubMedGoogle Scholar
  12. 12.
    Feighner JP (1999) Overview of antidepressants currently used to treat anxiety disorders. J Clin Psychiatry 60:18–22PubMedCrossRefGoogle Scholar
  13. 13.
    Gorman JM, Kent JM (1999) SSRIs and SNRIs: broad spectrum of efficacy beyond major depression. J Clin Psychiatry 60:33–38PubMedCrossRefGoogle Scholar
  14. 14.
    Zohar J, Westenberg HG (20004) Anxiety disorders: a review of tricyclic antidepressants and selective serotonin reuptake inhibitors. Acta Psychiatr Scand Suppl 03:39–49Google Scholar
  15. 15.
    Rocca P, Fonzo V, Scotta M, Zanalda E, Ravizza L (1997) Paroxetine efficacy in the treatment of generalised anxiety disorder. Acta Psychiatr Scand 95: 444–450PubMedCrossRefGoogle Scholar
  16. 16.
    File SE (1985). Animal models for predicting clinical efficacy of anxiolytic drugs: social behaviour. Neuropsychobiology 13:55–62PubMedCrossRefGoogle Scholar
  17. 17.
    Linnoila M, Eckhardt M, Durcan M, Lister R, Martin P (1987) Interactions of serotonin with ethanol: clinical and animal studies. Psychopharmacology Bull 23:452–457Google Scholar
  18. 18.
    Chopin P, Briley M (1987) Animal models of anxiety: the effects of compounds that modify 5-HT neurotransmission. TIPS 8:383–389Google Scholar
  19. 19.
    Bourin M, Redrobe JP, Hascoet M, Colombel MC, Baker GB (1996) A schematic representation of the psychopharmacological profile of antidepressants. Prog Neuro-Psychopharmacol Biol Psychiat 20:1389–1402CrossRefGoogle Scholar
  20. 20.
    Handley SL, McBlane JW (1992) Opposite effects of fluoxetine in two animal models of anxiety. Br J Pharmacol 107:446P (suppl)Google Scholar
  21. 21.
    Hascoët M, Bourin M, Colombel MC, Fiocco AJ, Baker GB (2000) Anxiolytic-like effects of antidepressants after acute administration in a four-plate test in mice. Pharmacol Biochem Behav 65:339–344PubMedCrossRefGoogle Scholar
  22. 22.
    Hyttel J (1996) Pharmacological characterisation of selective serotonin reuptake inhibitors (SSRIs). Int Clin Psychopharmacol 9:19–26CrossRefGoogle Scholar
  23. 23.
    Redrobe JP, Bourin M, Colombel MC, Baker GB(1998) Dose-dependent noradrenergic and serotonergic properties of venlafaxine in animal models indicative of antidepressant activity. Psychopharmacology 138:1–8PubMedCrossRefGoogle Scholar
  24. 24.
    Griebel G (1996) Variability in the effect of 5-HT related compounds in experimental models of anxiety : evidence for multiple mechanism of 5-HT in anxiety or never-ending story?. Polish J Pharmacol 48: 129–136Google Scholar
  25. 25.
    Eison MS (1989) The new generation of serotonergic anxiolytics: possible clinical roles. Psychopathology 22:13–20PubMedCrossRefGoogle Scholar
  26. 26.
    Ables AZ, Baughman OL 3rd (2003) Antidepressants: update on new agents and indications. Am Fam Physician 67:547–554PubMedGoogle Scholar
  27. 27.
    Bourin M, Lambert O (2002) Pharmacotherapy of anxious disorders. Hum Psychopharmacol 17:383–400PubMedCrossRefGoogle Scholar
  28. 28.
    Nemeroff CB (2003) Anxiolytics: past, present, and future agents. J Clin Psychiatry 64:3–6PubMedCrossRefGoogle Scholar
  29. 29.
    Vaswani M, Linda FK, Ramesh S (2003) Role of selective serotonin reuptake inhibitors in sychiatric disorders: a comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry 27:85–102Google Scholar
  30. 30.
    Lucki I (1996) Serotonin receptor specificity in anxiety disorders. J Clin Psychiatry 7:5–10Google Scholar
  31. 31.
    Passchier J, van Waarde A (2001) Visualisation of serotonin-1A (5-HT1A) receptors in the central nervous system. Eur J Nucl Med 28:113–129PubMedCrossRefGoogle Scholar
  32. 32.
    Bell C, Abrams J, Nutt D (2001) Tryptophan depletion and its implications for psychiatry. Br J Psychiatry 178:399–405PubMedCrossRefGoogle Scholar
  33. 33.
    Murphy DL, Wichems C, Li Q, Heils A (1999) Molecular manipulations as tools for enhancing our understanding of 5-HT neurotransmission. Trends Pharmacol Sci 20:246–252PubMedCrossRefGoogle Scholar
  34. 34.
    Zhuang X, Gross C, Santarelli L, Compan V, Trillat AC, Hen R (1999) Altered emotional states in knockout mice lacking 5-HT1A or 5-HT1B receptors. Neuropsychopharmacology 21:52 S-60 SPubMedGoogle Scholar
  35. 35.
    Griebel G (1995) 5-Hydroxytryptamine-interacting drugs in animal models of anxiety disorders: more than 30 years of research. Pharmacol Ther 65:319–395PubMedCrossRefGoogle Scholar
  36. 36.
    Millan MJ (2003) The neurobiology and control of anxious states. Prog Neurobiol 70:83–244.PubMedCrossRefGoogle Scholar
  37. 37.
    Hascoët M, Bourin M, Couetoux du Tertre A (1997) Influence of prior experience on mice behavior using the four-plate test. Pharmacol Biochem Behav 58:1131–1138PubMedCrossRefGoogle Scholar
  38. 38.
    Hascoët M, Bourin M, Nic Dhonnchadha BA (2000) The influence of buspirone, and its metabolite 1-PP, on the activity of paroxetine in the mouse light/dark paradigm and four plates test. Pharmacol Biochem Behav 67:45–53PubMedCrossRefGoogle Scholar
  39. 39.
    Charney DS, Woods SW, Goodman WK, Heninger GR (1987) Serotonin function in anxiety. II. Effects of the serotonin agonist MCPP in panic disorder patients and healthy subjects. Psychopharmacology (Berl) 92:14–24CrossRefGoogle Scholar
  40. 40.
    Hensman R, Guimarães FS, Wang M, Deakin JF (1991) Effects of ritanserin on ­aversive classical conditioning in humans. Psychopharmacology (Berl) 104:220–224CrossRefGoogle Scholar
  41. 41.
    Griebel G, Perrault G, Sanger DJ (1997) A comparative study of the effects of selective and non-selective 5-HT2 receptor subtype antagonists in rat and mouse models of anxiety. Neuropharmacology 36:793–802PubMedCrossRefGoogle Scholar
  42. 42.
    Nic Dhonnchadha BA, Bourin M, Hascoët M (2003) Anxiolytic-like effects of 5-HT2 ligands on three mouse models of anxiety. Behav Brain Res 140:203–214PubMedCrossRefGoogle Scholar
  43. 43.
    Nic Dhonnchadha BA, Hascoët M, Jolliet P, Bourin M (2003) Evidence for a 5-HT2A receptor mode of action in the anxiolytic-like properties of DOI in mice. Behav Brain Res 147:175–184PubMedCrossRefGoogle Scholar
  44. 44.
    Borsini F, Brambilla A, Cesana R, Donetti A (1993) The effect of DAU 6215, a novel 5HT-3 antagonist, in animal models of anxiety. Pharmacol Res 27:151–164PubMedCrossRefGoogle Scholar
  45. 45.
    Dooley DJ, Klamt I (1993) Differential profile of the CCKB receptor antagonist CI-988 and diazepam in the four-plate test. Psychopharmacology (Berl) 112:452–454CrossRefGoogle Scholar
  46. 46.
    Kłodzińska A, Tatarczyńska E, Stachowicz K, Chojnacka-Wójcik E (2004) The anxiolytic-like activity of AIDA (1-aminoindan-1,5-dicarboxylic acid), an mGLu 1 receptor antagonist. J Physiol Pharmacol 55:113–126PubMedGoogle Scholar
  47. 47.
    Kłodzińska A, Chojnacka-Wójcik E, Pałucha A, Brański P, Popik P, Pilc A (1999) Potential anti-anxiety, anti-addictive effects of LY 354740, a selective group II glutamate metabotropic receptors agonist in animal models. Neuropharmacology 38:1831–1839PubMedCrossRefGoogle Scholar
  48. 48.
    Rajarao SJ, Platt B, Sukoff SJ, Lin Q, Bender CN, Nieuwenhuijsen BW, Ring RH, Schechter LE, Rosenzweig-Lipson S, Beyer CE (2007) Anxiolytic-like activity of the non-selective galanin receptor agonist, galnon. Neuropeptides 41:307–320PubMedCrossRefGoogle Scholar
  49. 49.
    Klodzinska A, Tatarczyńska E, Chojnacka-Wójcik E, Nowak G, Cosford ND, Pilc A (2004) Anxiolytic-like effects of MTEP, a potent and selective mGlu5 receptor agonist does not involve GABA(A) signaling. Neuropharmacology 47:342–350PubMedCrossRefGoogle Scholar
  50. 50.
    Tatarczyńska E, Klodzińska A, Chojnacka-Wójcik E, Palucha A, Gasparini F, Kuhn R, Pilc A (2001) Potential anxiolytic- and antidepressant-like effects of MPEP, a potent, selective and systemically active mGlu5 receptor antagonist. Br J Pharmacol 132:1423–1430PubMedCrossRefGoogle Scholar
  51. 51.
    Stachowicz K, Brañski P, Kłak K, van der Putten H, Cryan JF, Flor PJ, Andrzej P (2008) Selective activation of metabotropic G-protein-coupled glutamate 7 receptor elicits anxiolytic-like effects in mice by modulating GABAergic neurotransmission. Behav Pharmacol 19:597–603PubMedCrossRefGoogle Scholar
  52. 52.
    Sanger DJ, Joly D (1991) The effects of NMDA antagonists on punished exploration in mice. Behav Pharmacol 2:57–63PubMedGoogle Scholar
  53. 53.
    Griebel G, Simiand J, Steinberg R, Jung M, Gully D, Roger P, Geslin M, Scatton B, Maffrand JP, Soubrié P (2002) 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1 S)-2-cyclopropyl-1-(3-fluoro-4-methylphenyl)ethyl]5-methyl-N-(2-propynyl)-1, 3-thiazol-2-amine hydrochloride (SSR125543A), a potent and selective corticotrophin-releasing factor(1) receptor antagonist. II. Characterization in rodent models of stress-related disorders. J Pharmacol Exp Ther 301:333–345PubMedCrossRefGoogle Scholar
  54. 54.
    Leonard SK, Dwyer JM, Sukoff Rizzo SJ, Platt B, Logue SF, Neal SJ, Malberg JE, Beyer CE, Schechter LE, Rosenzweig-Lipson S, Ring RH (2008) Pharmacology of neuropeptide S in mice: therapeutic relevance to anxiety ­disorders. Psychopharmacology (Berl) 197: 601–611CrossRefGoogle Scholar
  55. 55.
    Serradeil-Le Gal C, Wagnon J 3 rd, Tonnerre B, Roux R, Garcia G, Griebel G, Aulombard A (2005) An overview of SSR149415, a selective nonpeptide vasopressin V(1b) receptor antagonist for the treatment of stress-related disorders. CNS Drug Rev 11:53–68PubMedGoogle Scholar
  56. 56.
    Przegaliński E, Tatarczyńska E, Chojnacka-Wójcik E (1998) Anxiolytic- and antidepressant-like effects of an antagonist at glycineB receptors. Pol J Pharmacol 50:349–354PubMedGoogle Scholar
  57. 57.
    Ring RH, Malberg JE, Potestio L, Ping J, Boikess S, Luo B, Schechter LE, Rizzo S, Rahman Z, Rosenzweig-Lipson S (2006) Anxiolytic-like activity of oxytocin in male mice: behavioral and autonomic evidence, therapeutic implications. Psychopharmacology (Berl) 185:218–225CrossRefGoogle Scholar
  58. 58.
    Malberg JE, Platt B, Rizzo SJ, Ring RH, Lucki I, Schechter LE, Rosenzweig-Lipson S (2007) Increasing the levels of insulin-like growth factor-I by an IGF binding protein inhibitor produces anxiolytic and antidepressant-like effects. Neuropsychopharmacology 32:2360–2368PubMedCrossRefGoogle Scholar
  59. 59.
    Hughes ZA, Liu F, Platt BJ, Dwyer JM, Pulicicchio CM, Zhang G, Schechter LE, Rosenzweig-Lipson S, Day M (2008) WAY-200070, a selective agonist of estrogen receptor beta as a potential novel anxiolytic/antidepressant agent. Neuropharmacology 54:1136–1142PubMedCrossRefGoogle Scholar
  60. 60.
    Foreman MM, Hanania T, Eller M (2009) Anxiolytic effects of lamotrigine and JZP-4 in the elevated plus maze and in the four plate conflict test. Eur J Pharmacol 14:602:316–320CrossRefGoogle Scholar
  61. 61.
    Stemmelin J, Cohen C, Terranova JP, Lopez-Grancha M, Pichat P, Bergis O, Decobert M, Santucci V, Françon D, Alonso R, Stahl SM, Keane P, Avenet P, Scatton B, le Fur G, Griebel G (2008) Stimulation of the beta3-Adrenoceptor as a novel treatment strategy for anxiety and depressive disorders. Neuropsychophar­macology 33:574–587PubMedCrossRefGoogle Scholar
  62. 62.
    Wesołowska A, Nikiforuk A, Stachowicz K, Tatarczyńska E (2006) Effect of the selective 5-HT7 receptor antagonist SB 269970 in animal models of anxiety and depression. Neuropharmacology 51:578–586PubMedCrossRefGoogle Scholar
  63. 63.
    Wesołowska A, Nikiforuk A (2007) Effects of the brain-penetrant and selective 5-HT6 receptor antagonist SB-399885 in animal models of anxiety and depression. Neuropharmacology 52:1274–1283PubMedCrossRefGoogle Scholar
  64. 64.
    Grisel JE, Fleshner M, Watkins LR, Maier SF (1993) Opioid and nonopioid interactions in two forms of stress-induced analgesia. Pharmacol Biochem Behav 45:161–172PubMedCrossRefGoogle Scholar
  65. 65.
    Fardin V, Oliveras JL, Besson JM (1984) A reinvestigation of the analgesic effects induced by stimulation of the periaqueductal gray matter in the rat: IR The production of behavioral side effects together with analgesia. Brain Res 306:105–123PubMedCrossRefGoogle Scholar
  66. 66.
    Jacob JJ, Tremblay EC, Colombel MC (1994) Enhancement of nociceptive reactions by naloxone in mice and rats. Psychopharmacologia 37:217–223CrossRefGoogle Scholar
  67. 67.
    Espejo EF, Mir D (1993) Structure of the rat’s behaviour in the hot plate test. Behav Brain Res 56:171–176PubMedCrossRefGoogle Scholar
  68. 68.
    Espejo EF, Stinus L, Cador M, Mir D (1994) Effects of morphine and naloxone on behaviour in the hot plate test: an ethopharmacological study in the rat. Psychopharmacology 113:500–510PubMedCrossRefGoogle Scholar
  69. 69.
    Ripoll N, Hascoët M, Bourin M (2006) The four-plates test: anxiolytic or analgesic paradigm? Prog Neuropsychopharmacol Biol Psychiatry 30:873–880Google Scholar
  70. 70.
    Drugan RC, Ryan SM, Minor TR, Maier SF (1984) Librium prevents the analgesia and shuttlebox escape deficit typically observed following inescapable shock. Pharmacol Biochem Behav 21:749–754PubMedCrossRefGoogle Scholar
  71. 71.
    Gatch MB (1999) Effects of benzodiazepines on acute and chronic ethanol-induced nociception in rats. Alcohol Clin Exp Res 23:1736–1743PubMedCrossRefGoogle Scholar
  72. 72.
    Nadeson R, Guo Z, Porter V, Gent JP, Goodchild CS (1996) Gamma-aminobutyric acidA receptors and spinally mediated antinociception in rats. J Pharmacol Exp Ther 278:620–626PubMedGoogle Scholar
  73. 73.
    Pakulska W, Czarnecka E (2001) Effect of diazepam and midazolam on the antinociceptive effect of morphine, metamizol and indomethacin in mice. Pharmazie 56:89–91PubMedGoogle Scholar
  74. 74.
    Rosland JH, Hole K (1990) Benzodiazepine-induced antagonism of opioid antinociception may be abolished by spinalization or blockade of the benzodiazepine receptor. Pharmacol Biochem Behav 37:505–509PubMedCrossRefGoogle Scholar
  75. 75.
    Borges PC, Coimbra NC, Brandao ML (1988) Independence of aversive and pain mechanisms in the dorsal periaqueductal gray matter of the rat. Braz J Med Biol Res 21:1027–1031PubMedGoogle Scholar
  76. 76.
    Fasmer OB, Hunskaar S, Hole K (1989) Antinociceptive effects of serotonergic reuptake inhibitors in mice. Neuropharmacology 28:1363–1366PubMedCrossRefGoogle Scholar
  77. 77.
    Otsuka N, Kiuchi Y, Yokogawa F, Masuda Y, Oguchi K, Hosoyamada A (2001) Antinociceptive efficacy of antidepressants: assessment of five antidepressants and four monoamine receptors in rats. J Anesth 15:154–158PubMedCrossRefGoogle Scholar
  78. 78.
    Yokogawa F, Kiuchi Y, Ishikawa Y, Otsuka N, Masuda Y, Oguchi K, et al.(2002) An investigation of monoamine receptors involved in antinociceptive effects of antidepressants. Anesth Analg 95:163–168PubMedCrossRefGoogle Scholar
  79. 79.
    Okuda K, Takanishi T, Yoshimoto K, Ueda S (2003) Trazodone hydrochloride attenuates thermal hyperalgesia in a chronic constriction injury rat model. Eur J Anaesthesiol 20:409–415PubMedCrossRefGoogle Scholar
  80. 80.
    Schreiber S, Backer MM, Herman I, Shamir D, Boniel T, Pick CG (2000) The antinociceptive effect of trazodone in mice is mediated through both mu-opioid and serotonergic mechanisms. Behav Brain Res 114:51–56PubMedCrossRefGoogle Scholar
  81. 81.
    Bourin M, Masse F, Dailly E, Hascoët M (2005) Anxiolytic-like effect of milnacipran in the four-plate test in mice: mechanism of action. Pharmacol Biochem Behav 81:645–656PubMedCrossRefGoogle Scholar
  82. 82.
    David DJ, Renard CE, Jolliet P, Hascoet M, Bourin M (2003) Antidepressant-like effects in various mice strains in the forced swimming test. Psychopharmacology 166:373–382PubMedGoogle Scholar
  83. 83.
    Prado WA, Roberts MH (1985) An assessment of the antinociceptive and aversive effects of stimulating identified sites in the rat brain. Brain Res 340:219–228PubMedCrossRefGoogle Scholar
  84. 84.
    Beyer CE, Dwyer JM, Platt BJ, Neal S, Luo B, Ling HP, Lin Q, Mark RJ, Rosenzweig-Lipson S, Schechter LE (2010) Angiotensin IV elevates oxytocin levels in the rat amygdala and produces anxiolytic-like activity through subsequent oxytocin receptor activation. Psychopharmacology (Berl) 209:303–311CrossRefGoogle Scholar
  85. 85.
    Czopek A, Byrtus H, Kołaczkowski M, Pawłowski M, Dybała M, Nowak G, Tatarczyńska E, Wesołowska A, Chojnacka-Wójcik E (2010) Synthesis and pharmacological evaluation of new 5-(cyclo)alkyl-5-phenyl- and 5-spiroimidazolidine-2,4-dione derivatives. Novel 5-HT1A receptor agonist with potential antidepressant and anxiolytic activity. Eur J Med Chem 45:1295–1303PubMedCrossRefGoogle Scholar
  86. 86.
    Massé F, Hascoët M, Bourin M (2005) alpha2-Adrenergic agonists antagonise the anxiolytic-like effect of antidepressants in the four-plate test in mice. Behav Brain Res 164:17–28PubMedCrossRefGoogle Scholar
  87. 87.
    Massé F, Hascoët M, Dailly E, Bourin M (2006) Effect of noradrenergic system on the anxiolytic-like effect of DOI (5-HT2A/2 C agonists) in the four-plate test. Psychopharmacology (Berl) 83:471–481CrossRefGoogle Scholar
  88. 88.
    Nic Dhonnchadha BA, Ripoll N, Clenet F, Hascoët M, Bourin M (2005) Implication of 5-HT2 receptor subtypes in the mechanism of action of antidepressants in the four plates test. Psychopharmacology (Berl) 179:418–429CrossRefGoogle Scholar
  89. 89.
    Ripoll N, Hascoët M, Bourin M (2006) Implication of 5-HT(2A) subtype receptors in DOI activity in the four-plates test-retest paradigm in mice. Behav Brain Res 166:131–139PubMedCrossRefGoogle Scholar
  90. 90.
    Massé F, Petit-Démoulière B, Dubois I, Hascoët M, Bourin M (2008) Anxiolytic-like effect of DOI microinjections into the hippocampus (but not the amygdala nor the PAG) in the mice test. Behav. Brain Res 188: 291–297PubMedGoogle Scholar
  91. 91.
    Petit-Demoulière B, Massé F, Cogrel N, Hascoët M, Bourin M (2009) Brain structures implicated in the four-plate test in naïve and experienced Swiss mice using injection of diazepam and the 5-HT2A agonist DOI. Behav Brain Res 204:200–205PubMedCrossRefGoogle Scholar
  92. 92.
    Ripoll N, Nic Dhonnchadha BA, Sébille V, Bourin M, Hascoët M (2005) The four-plates test-retest paradigm to discriminate anxiolytic effects. Psychopharmacology (Berl) 180:73–83CrossRefGoogle Scholar
  93. 93.
    File SE (1990) “One-trial tolerance to the anxiolytic effects of chlordiazepoxide in the plus-maze.” Psychopharmacology (Berl) 100:281–282CrossRefGoogle Scholar
  94. 94.
    Petit-Demoulière B, Hascoët M, Bourin M (2008) Factors triggering abolishment of benzodiazepines effects in the Four-Plate Test–retest in mice. Eur Neuropsychopharmacol 18:41–47PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Neurobiologie de l’anxiété et de la dépression, Faculté de MédecineUniversity of NantesNantesFrance

Personalised recommendations