Advertisement

Neuropeptides pp 357-376 | Cite as

Recombinant Adeno-Associated Viral Vectors

  • Marijke W. A. de Backer
  • Keith M. Garner
  • Mieneke C. M. Luijendijk
  • Roger A. H. AdanEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 789)

Abstract

Recombinant adeno-associated viral (rAAV) vectors can be used to locally or systemically enhance or silence gene expression. They are relatively nonimmunogenic and can transduce dividing and nondividing cells, and different rAAV serotypes may transduce diverse cell types. Therefore, rAAV vectors are excellent tools to study the function of neuropeptides in local brain areas. In this chapter, we describe a protocol to produce high-titer, in vivo grade, rAAV vector stocks. The protocol includes an Iodixanol gradient, an anion exchange column and a desalting/concentration step and can be used for every serotype. In addition, a short protocol for rAAV injections into the brain and directions on how to detect and localize transduced cells are given.

Key words

Recombinant adeno-associated virus rAAV Vector production Vector purification Serotype Central nervous system 

References

  1. 1.
    Daya, S., and Berns, K. I. (2008) Gene therapy using adeno-associated virus vectors. Clin. Microbiol. Rev. 21, 583–593PubMedCrossRefGoogle Scholar
  2. 2.
    Bouard, D., Alazard-Dany, D., and Cosset, F. L. (2009) Viral vectors: from virology to transgene expression. Br. J. Pharmacol. 157, 153–165PubMedCrossRefGoogle Scholar
  3. 3.
    Kaplitt, M. G., Leone, P., Samulski, R. J., Xiao, X., Pfaff, D. W., Omalley, K. L. et al. (1994) Long-term gene-expression and phenotypic correction using adenoassociated virus vectors in the mammalian brain. Nat. Genetics 8, 148–154CrossRefGoogle Scholar
  4. 4.
    Xiao, X., Li, J., and Samulski, R. J. (1998) Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol. 72, 2224–2232PubMedGoogle Scholar
  5. 5.
    Grimm, D., Kern, A., Rittner, K., and Kleinschmidt, J. A. (1998) Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum. Gene Ther. 9, 2745–2760PubMedCrossRefGoogle Scholar
  6. 6.
    Collaco, R. F., Cao, X., and Trempe, J. P. (1999) A helper virus-free packaging system for recombinant adeno-associated virus vectors. Gene 238, 397–405PubMedCrossRefGoogle Scholar
  7. 7.
    Matsushita, T., Elliger, S., Elliger, C., Podsakoff, G., Villarreal, L., Kurtzman, G. J. et al. (1998) Adeno-associated virus vectors can be efficiently produced without helper virus. Gene Ther. 5, 938–945PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang, X., De Alwis, M., Hart, S. L., Fitzke, F. W., Inglis, S. C., Boursnell, M. E. et al. (1999) High-titer recombinant adeno-associated virus production from replicating amplicons and herpes vectors deleted for glycoprotein H. Hum. Gene Ther. 10, 2527–2537PubMedCrossRefGoogle Scholar
  9. 9.
    Grieger, J. C., Choi, V. W., and Samulski, R. J. (2006) Production and characterization of adeno-associated viral vectors. Nat. Protocols. 1, 1412–1428CrossRefGoogle Scholar
  10. 10.
    Qiao, C., Wang, B., Zhu, X., Li, J., and Xiao, X. (2002) A novel gene expression control system and its use in stable, high-titer 293 cell-based adeno-associated virus packaging cell lines. J. Virol. 76, 13015–13027PubMedCrossRefGoogle Scholar
  11. 11.
    Urabe, M., Ding, C., and Kotin, R. M. (2002) Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum. Gene Ther. 13, 1935–1943PubMedCrossRefGoogle Scholar
  12. 12.
    Ferrari, F. K., Xiao, X., McCarty, D., and Samulski, R. J. (1997) New developments in the generation of Ad-free, high-titer rAAV gene therapy vectors. Nat. Medicine 3, 1295–1297CrossRefGoogle Scholar
  13. 13.
    Michelfelder, S., and Trepel, M. (2009) Adeno-associated viral vectors and their redirection to cell-type specific receptors. Adv. Genet. 67, 29–60PubMedCrossRefGoogle Scholar
  14. 14.
    Vandenberghe, L. H., Wilson, J. M., and Gao, G. (2009) Tailoring the AAV vector capsid for gene therapy. Gene Ther. 16, 311–319PubMedCrossRefGoogle Scholar
  15. 15.
    Summerford, C., and Samulski, R. J. (1998) Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J. Virol. 72, 1438–1445PubMedGoogle Scholar
  16. 16.
    Kaludov, N., Brown, K. E., Walters, R. W., Zabner, J., and Chiorini, J. A. (2001) Adeno-associated virus serotype 4 (AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity. J. Virol. 75, 6884–6893PubMedCrossRefGoogle Scholar
  17. 17.
    Wu, Z., Miller, E., Agbandje-McKenna, M., and Samulski, R. J. (2006) Alpha2,3 and alpha2,6 N-linked sialic acids facilitate efficient binding and transduction by adeno-associated virus types 1 and 6. J. Virol. 80, 9093–9103PubMedCrossRefGoogle Scholar
  18. 18.
    Summerford, C., Bartlett, J. S., and Samulski, R. J. (1999) alpha V beta 5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat. Medicine 5, 78–82CrossRefGoogle Scholar
  19. 19.
    Kashiwakura, Y., Tamayose, K., Iwabuchi, K., Hirai, Y., Shimada, T., Matsumoto, K. et al. (2005) Hepatocyte growth factor receptor is a coreceptor for adeno-associated virus type 2 infection. J. Virol. 79, 609–614PubMedCrossRefGoogle Scholar
  20. 20.
    Kurzeder, C., Koppold, B., Sauer, G., Pabst, S., Kreienberg, R., and Deissler, H. (2007) CD9 promotes adeno-associated virus type 2 infection of mammary carcinoma cells with low cell surface expression of heparan sulphate proteoglycans. Int. J. Mol. Med. 19, 325–333PubMedGoogle Scholar
  21. 21.
    Burger, C., Gorbatyuk, O. S., Velardo, M. J., Peden, C. S., Williams, P., Zolotukhin, S. et al. (2004) Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol. Ther. 10, 302–317PubMedCrossRefGoogle Scholar
  22. 22.
    Reimsnider, S., Manfredsson, F. P., Muzyczka, N., and Mandel, R. J. (2007) Time course of transgene expression after intrastriatal pseudotyped rAAV2/1, rAAV2/2, rAAV2/5, and rAAV2/8 transduction in the rat. Mol. Ther. 15, 1504–1511PubMedCrossRefGoogle Scholar
  23. 23.
    Klein, R. L., Dayton, R. D., Tatom, J. B., Henderson, K. M., and Henning, P. P. (2008) AAV8, 9, Rh10, Rh43 vector gene transfer in the rat brain: effects of serotype, promoter and purification method. Mol. Ther. 16, 89–96PubMedCrossRefGoogle Scholar
  24. 24.
    Klein, R. L., Dayton, R. D., Leidenheimer, N. J., Jansen, K., Golde, T. E., and Zweig, R. M. (2006) Efficient neuronal gene transfer with AAV8 leads to neurotoxic levels of tau or green fluorescent proteins. Mol. Ther. 13, 517–527PubMedCrossRefGoogle Scholar
  25. 25.
    McFarland, N. R., Lee, J. S., Hyman, B. T., and McLean, P. J. (2009) Comparison of transduction efficiency of recombinant AAV serotypes 1, 2, 5, and 8 in the rat nigrostriatal system. J. Neurochem. 109, 838–845PubMedCrossRefGoogle Scholar
  26. 26.
    de Backer, M., Brans, M., Luijendijk, M., Garner, K., and Adan, R. (2010) Optimization of adeno-associated viral vector mediated gene delivery to the hypothalamus. Hum. Gene Ther. 21, 673–82PubMedCrossRefGoogle Scholar
  27. 27.
    Dong, J. Y., Fan, P. D., and Frizzell, R. A. (1996) Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum. Gene Ther. 7, 2101–2112PubMedCrossRefGoogle Scholar
  28. 28.
    Grieger, J. C., and Samulski, R. J. (2005) Packaging capacity of adeno-associated virus serotypes: impact of larger genomes on infectivity and postentry steps. J. Virol. 79, 9933–9944PubMedCrossRefGoogle Scholar
  29. 29.
    McCarty, D. M., Monahan, P. E., and Samulski, R. J. (2001) Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther. 8, 1248–1254PubMedCrossRefGoogle Scholar
  30. 30.
    McCarty, D. M. (2008) Self-complementary AAV vectors; advances and applications. Mol. Ther. 16, 1648–1656PubMedCrossRefGoogle Scholar
  31. 31.
    Wang, Z., Ma, H. I., Li, J., Sun, L., Zhang, J., and Xiao, X. (2003) Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Therapy 10, 2105–2111PubMedCrossRefGoogle Scholar
  32. 32.
    McCarty, D. M., Fu, H., Monahan, P. E., Toulson, C. E., Naik, P., and Samulski, R. J. (2003) Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Ther. 10, 2112–2118PubMedCrossRefGoogle Scholar
  33. 33.
    Buie, L. K., Rasmussen, C. A., Porterfield, E. C., Ramgolam, V. S., Choi, V. W., Markovic-Plese, S. et al. (2010) Self-complementary AAV virus (scAAV) safe and long-term gene transfer in the trabecular meshwork of living rats and monkeys. Invest Ophthalmol. Vis. Sci. 51, 236–248PubMedCrossRefGoogle Scholar
  34. 34.
    Chamberlin, N. L., Du, B., de Lacalle, S., and Saper, C. B. (1998) Recombinant adeno-associated virus vector: use for transgene expression and anterograde tract tracing in the CNS. Brain Res. 793, 169–175PubMedCrossRefGoogle Scholar
  35. 35.
    Broekman, M. L., Tierney, L. A., Benn, C., Chawla, P., Cha, J. H., and Sena-Esteves, M. (2009) Mechanisms of distribution of mouse beta-galactosidase in the adult GM1-gangliosidosis brain. Gene Ther. 16, 303–308PubMedCrossRefGoogle Scholar
  36. 36.
    El Meskini, R., Jin, L., Marx, R., Bruzzaniti, A., Lee, J., Emeson, R. et al. (2001) A signal sequence is sufficient for green fluorescent protein to be routed to regulated secretory granules. Endocrinology 142, 864–873PubMedCrossRefGoogle Scholar
  37. 37.
    Pouli, A. E., Kennedy, H. J., Schofield, J. G., and Rutter, G. A. (1998) Insulin targeting to the regulated secretory pathway after fusion with green fluorescent protein and firefly luciferase. Biochem. J. 331, 669–675PubMedGoogle Scholar
  38. 38.
    Haberman, R. P., Samulski, R. J., and McCown, T. J. (2003) Attenuation of seizures and neuronal death by adeno-associated virus vector galanin expression and secretion. Nat. Medicine 9, 1076–1080CrossRefGoogle Scholar
  39. 39.
    Gasmi, M., Herzog, C. D., Brandon, E. P., Cunningham, J. J., Ramirez, G. A., Ketchum, E. T. et al. (2007) Striatal delivery of neurturin by CERE-120, an AAV2 vector for the treatment of dopaminergic neuron degeneration in Parkinson’s disease. Mol. Ther. 15, 62–68PubMedCrossRefGoogle Scholar
  40. 40.
    Lieberman, D. M., Laske, D. W., Morrison, P. F., Bankiewicz, K. S., and Oldfield, E. H. (1995) Convection-enhanced distribution of large molecules in gray matter during interstitial drug infusion. J. Neurosurg. 82, 1021–1029PubMedCrossRefGoogle Scholar
  41. 41.
    Cunningham, J., Oiwa, Y., Nagy, D., Podsakoff, G., Colosi, P., and Bankiewicz, K. S. (2000) Distribution of AAV-TK following intracranial convection-enhanced delivery into rats. Cell Transplant. 9, 585–594PubMedGoogle Scholar
  42. 42.
    Nguyen, J. B., Sanchez-Pernaute, R., Cunningham, J., and Bankiewicz, K. S. (2001) Convection-enhanced delivery of AAV-2 combined with heparin increases TK gene transfer in the rat brain. Neuroreport 12, 1961–1964PubMedCrossRefGoogle Scholar
  43. 43.
    Mastakov, M. Y., Baer, K., Xu, R., Fitzsimons, H., and During, M. J. (2001) Combined injection of rAAV with mannitol enhances gene expression in the rat brain. Mol. Ther. 3, 225–232PubMedCrossRefGoogle Scholar
  44. 44.
    Fu, H., Muenzer, J., Samulski, R. J., Breese, G., Sifford, J., Zeng, X. et al. (2003) Self-complementary adeno-associated virus serotype 2 vector: global distribution and broad dispersion of AAV-mediated transgene expression in mouse brain. Mol. Ther. 8, 911–917PubMedCrossRefGoogle Scholar
  45. 45.
    Zolotukhin, S., Potter, M., Zolotukhin, I., Sakai, Y., Loiler, S., Fraites, T. J., Jr. et al. (2002) Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods 28, 158–167PubMedCrossRefGoogle Scholar
  46. 46.
    Zolotukhin, S., Byrne, B. J., Mason, E., Zolotukhin, I., Potter, M., Chesnut, K. et al. (1999) Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther. 6, 973–985PubMedCrossRefGoogle Scholar
  47. 47.
    Reed, S. E., Staley, E. M., Mayginnes, J. P., Pintel, D. J., and Tullis, G. E. (2006) Transfection of mammalian cells using linear polyethylenimine is a simple and effective means of producing recombinant adeno-associated virus vectors. J. Virol. Meth. 138, 85–98PubMedCrossRefGoogle Scholar
  48. 48.
    Veldwijk, M. R., Topaly, J., Laufs, S., Hengge, U. R., Wenz, F., Zeller, W. J. et al. (2002) Development and optimization of a real-time quantitative PCR-based method for the titration of AAV-2 vector stocks. Mol. Ther. 6, 272–278PubMedCrossRefGoogle Scholar
  49. 49.
    Klein, R. L., Hamby, M. E., Gong, Y., Hirko, A. C., Wang, S., Hughes, J. A. et al. (2002) Dose and promoter effects of adeno-associated viral vector for green fluorescent protein expression in the rat brain. Exp. Neurol. 176, 66–74PubMedCrossRefGoogle Scholar
  50. 50.
    Zincarelli, C., Soltys, S., Rengo, G., and Rabinowitz, J. E. (2008) Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection. Mol. Ther. 16, 1073–1080PubMedCrossRefGoogle Scholar
  51. 51.
    Sun, B., Zhang, H., Franco, L. M., Young, S. P., Schneider, A., Bird, A. et al. (2005) Efficacy of an adeno-associated virus 8-pseudotyped vector in glycogen storage disease type II. Mol. Ther. 11, 57–65PubMedCrossRefGoogle Scholar
  52. 52.
    Rafi, M. A., Zhi, R. H., Passini, M. A., Curtis, M., Vanier, M. T., Zaka, M. et al. (2005) AAV-mediated expression of galactocerebrosidase in brain results in attenuated symptoms and extended life span in murine models of globoid cell leukodystrophy. Mol. Ther. 11, 734–744PubMedCrossRefGoogle Scholar
  53. 53.
    Grimm, D., Kay, M. A., and Kleinschmidt, J. A. (2003) Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol. Ther. 7, 839–850PubMedCrossRefGoogle Scholar
  54. 54.
    Rabinowitz, J. E., Rolling, F., Li, C. W., Conrath, H., Xiao, W. D., Xiao, X. et al. (2002) Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J. Virol. 76, 791–801PubMedCrossRefGoogle Scholar
  55. 55.
    Rabinowitz, J. E., Bowles, D. E., Faust, S. M., Ledford, J. G., Cunningham, S. E., and Samulski, R. J. (2004) Cross-dressing the virion: the transcapsidation of adeno-­associated virus serotypes functionally defines subgroups. J. Virol. 78, 4421–4432PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Marijke W. A. de Backer
    • 1
  • Keith M. Garner
    • 1
  • Mieneke C. M. Luijendijk
    • 1
  • Roger A. H. Adan
    • 1
    Email author
  1. 1.Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of NeuroscienceUtrecht University Medical Centre UtrechtUtrechtThe Netherlands

Personalised recommendations