Skip to main content

What Are Neuropeptides?

Part of the Methods in Molecular Biology book series (MIMB,volume 789)

Abstract

We know neuropeptides now for over 40 years as chemical signals in the brain. The discovery of neuropeptides is founded on groundbreaking research in physiology, endocrinology, and biochemistry during the last century and has been built on three seminal notions: (1) peptide hormones are chemical signals in the endocrine system; (2) neurosecretion of peptides is a general principle in the nervous system; and (3) the nervous system is responsive to peptide signals. These historical lines have contributed to how neuropeptides can be defined today: “Neuropeptides are small proteinaceous substances produced and released by neurons through the regulated secretory route and acting on neural substrates.” Thus, neuropeptides are the most diverse class of signaling molecules in the brain engaged in many physiological functions. According to this definition almost 70 genes can be distinguished in the mammalian genome, encoding neuropeptide precursors and a multitude of bioactive neuropeptides. In addition, among cytokines, peptide hormones, and growth factors there are several subfamilies of peptides displaying most of the hallmarks of neuropeptides, for example neural chemokines, cerebellins, neurexophilins, and granins. All classical neuropeptides as well as putative neuropeptides from the latter families are presented as a resource.

Key words

  • Cerebellins
  • Chemokines
  • Granins
  • Adipose peptides
  • Neuropeptide synthesis

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-61779-310-3_1
  • Chapter length: 36 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-61779-310-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.00
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig.  1.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Klavdieva, M.M. (1995) The history of neuropeptides 1. Front. Neuroendocrinol. 16, 293–321.

    PubMed  CrossRef  CAS  Google Scholar 

  2. Klavdieva, M.M. (1996) The history of neuropeptides II. Front. Neuroendocrinol. 17, 126–153.

    Google Scholar 

  3. Klavdieva, M.M. (1996) The history of neuropeptides III. Front. Neuroendocrinol. 17, 155–179.

    PubMed  CrossRef  CAS  Google Scholar 

  4. Klavdieva, M.M. (1996) The history of neuropeptides IV. Front. Neuroendocrinol. 17, 247–280.

    PubMed  CrossRef  CAS  Google Scholar 

  5. Bayliss, W.M., and Starling, E.H. (1902) The mechanism of pancreatic secretion. J. Physiol. 28, 325–353.

    PubMed  CAS  Google Scholar 

  6. Oliver, C., and Shäfer, E.A. (1895) On the physiological actions of extracts of the pituitary body and certain other glandular organs. J. Physiol. 18, 277–279.

    PubMed  CAS  Google Scholar 

  7. Von den Velden, R. (1913) Die Nierenwirkung von Hypophysenextrakten beim Menschen. Klin. Wochschr. (Berlin) 50, 2083–2086.

    Google Scholar 

  8. Starling, E.H. (1904) The chemical regulation of the secretory process (Croonian Lecture to the Royal Society). Proc. Royal Soc. 73B, 310–322.

    Google Scholar 

  9. Starling, E.H. (1905) Croonian Lecture: On the chemical correlation of the functions of the body I. Lancet 2, 339–341.

    CAS  Google Scholar 

  10. Starling, E.H. (1905) Croonian Lecture: On the chemical correlation of the functions of the body II. Lancet 2, 423–425.

    Google Scholar 

  11. Starling, E.H. (1905) Croonian Lecture: On the chemical correlation of the functions of the body III. Lancet 2, 501–503.

    Google Scholar 

  12. Starling, E.H. (1905) Croonian Lecture: On the chemical correlation of the functions of the body IV. Lancet 2, 579–583.

    Google Scholar 

  13. Von Euler, U.S., and Gaddum J.H. (1931) An unidentified depressor substance in certain tissue extracts. J. Physiol. 72, 74–87.

    Google Scholar 

  14. Du Vigneaud, V., Lawler, H.C., and Popenoe, E.A. (1953) Enzymatic cleavage of glycinamide from vasopressin and a proposed structure for this pressor-antidiuretic hormone of the posterior pituitary. J. Am. Chem. Soc. 75, 4880–4881.

    CrossRef  Google Scholar 

  15. Wade, N. (1981) The Nobel Duel. Doubleday, Garden City, New York.

    Google Scholar 

  16. Tatemoto, K., and Mutt, V. (1980) Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature 285, 417–418.

    PubMed  CrossRef  CAS  Google Scholar 

  17. Hughes, J., Smith, T.W., Kosterlitz, H.W. et al (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258, 577–580.

    PubMed  CrossRef  CAS  Google Scholar 

  18. Speidel, C.C. (1919) Gland-cells of internal secretion in the spinal cord of the skaes. Carengie Institute Washington Publications 13, 1–31

    Google Scholar 

  19. Scharrer, E., and Scharrer, B. (1937) Über Drüsen-Nervenzellen und neurosekretorische Organe bei Wirbellosen und Wirbeltieren. Biol. Rev. 12, 185–216.

    CrossRef  Google Scholar 

  20. Sterba, G. (1964) Principles of histochemical and biochemical demonstration of neurosecretion (carrier protein of oxytocin) with pseudoisocyanine. Acta Histochem. 17, 268–92.

    PubMed  CAS  Google Scholar 

  21. Bargmann W, Scharrer E (1951) The site of origin of the hormones of the posterior pituitary. Am. Sci. 39, 255–259.

    Google Scholar 

  22. Hökfelt, T., Johansson, O., Ljungdahl, A., Lundberg, J.M., and Schultzberg, M. (1980) Peptidergic neurones. Nature 284, 515–521.

    PubMed  CrossRef  Google Scholar 

  23. Bohus, B., and De Wied, D. (1966) Inhibitory and facilitatory effect of two related peptides on extinction of avoidance behavior. Science 153, 318–320.

    PubMed  CrossRef  CAS  Google Scholar 

  24. De Wied, D. (1969) Effects of peptide hormones on behavior. In: Ganong, W.F., and Martini, L. (eds), Frontiers in neuroendocrinology. Oxford University Press, New York, pp. 97–140.

    Google Scholar 

  25. De Wied, D. (1971) Long term effect of vasopressin on the maintenance of a conditioned avoidance response in rats. Nature 232, 58–60.

    PubMed  CrossRef  Google Scholar 

  26. Brownstein, M.J. (1977) Studies of the distribution of biologically active peptides in the brain. Adv. Exp. Med. Biol. 87, 41–48.

    PubMed  CAS  Google Scholar 

  27. Hur, Y.S., Kim, K.D., Paek, S.H. et al (2010) Evidence for the existence of secretory granule (dense-core vesicle)-based inositol 1,4,5-trisphosphate-dependent Ca2+ signaling system in astrocytes. PLoS One 5, e11973.

    PubMed  CrossRef  Google Scholar 

  28. Lonka-Nevalaita, L., Lume, M., Leppanen, S. et al (2010) Characterization of the intracellular localization, processing, and secretion of two glial cell line-derived neurotrophic factor splice isoforms. J. Neurosci. 30, 11403–11413.

    PubMed  CrossRef  CAS  Google Scholar 

  29. Brownstein, M.J., Russell, J.T., and Gainer, H. (1980) Synthesis, transport, and release of posterior pituitary hormones. Science 207, 373–378.

    PubMed  CrossRef  CAS  Google Scholar 

  30. Tooze, S.A., and Huttner, W.B. (1990) Cell-free protein sorting to the regulated and constitutive secretory pathways. Cell 60, 837–847.

    PubMed  CrossRef  CAS  Google Scholar 

  31. Lang, T., Wacker, I., Steyer, J. et al (1997) Ca2+−triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy. Neuron 18, 857–863.

    PubMed  CrossRef  CAS  Google Scholar 

  32. Tooze, S.A., Martens, G.J., and Huttner, W.B. (2001) Secretory granule biogenesis: rafting to the SNARE. Trends Cell Biol. 11, 116–122.

    PubMed  CrossRef  CAS  Google Scholar 

  33. Burbach, J.P.H., and Wiegant, V.M. (1990) Gene expression, biosynthesis and processing of proopiomelanocortin peptides and vasopressin. In: De Wied, D. (ed), Neuropeptides, basics and perspectives. Elsevier, Amsterdam, pp 45–103.

    Google Scholar 

  34. , S.G., Jonas, V., Rosenfeld, M.G. et al (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298, 240–244.

    Google Scholar 

  35. Nawa, H., Kotani, H., Nakanishi, S. (1984) Tissue-specific generation of two preprotachykinin mRNAs from one gene by alternative RNA splicing. Nature 312, 729–734.

    PubMed  CrossRef  CAS  Google Scholar 

  36. Zhao, E., Zhang, D., Basak, A. et al (2009) New insights into granin-derived peptides: evolution and endocrine roles. Gen. Comp. Endocrinol. 164, 161–174.

    PubMed  CrossRef  CAS  Google Scholar 

  37. Braks, J.A., and Martens, G.J. (1994) 7B2 is a neuroendocrine chaperone that transiently interacts with prohormone convertase PC2 in the secretory pathway. Cell 78, 263–273.

    PubMed  CrossRef  CAS  Google Scholar 

  38. Ubogu, E.E., Cossoy, M.B., and Ransohoff, R.M. (2006) The expression and function of chemokines involved in CNS inflammation. Trends Pharmacol. Sci. 27, 48–55.

    PubMed  CrossRef  CAS  Google Scholar 

  39. de Haas, A.H., van Weering, H.R., de Jong, E.K. et al (2007) Neuronal chemokines:versatile messengers in central nervous system cell interaction. Mol Neurobiol. 36, 137–151.

    PubMed  CrossRef  Google Scholar 

  40. Miller, R.J., Rostene, W., Apartis, E. et al (2008) Chemokine action in the nervous system. J. Neurosci. 28, 11792–11795.

    PubMed  CrossRef  CAS  Google Scholar 

  41. Huang, E.J., and Reichardt, L.F. (2001) Neurotrophins:roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736.

    PubMed  CrossRef  CAS  Google Scholar 

  42. Thomas, K., and Davies, A. (2005) Neurotrophins:a ticket to ride for BDNF. Curr. Biol. 15, R262-R264.

    PubMed  CrossRef  CAS  Google Scholar 

  43. Salio, C., Averill, S., Priestley, J.V. et al (2007) Costorage of BDNF and neuropeptides within individual dense-core vesicles in central and peripheral neurons. Dev. Neurobiol. 67, 326–338.

    PubMed  CrossRef  CAS  Google Scholar 

  44. Yang, J., Siao, C.J., Nagappan, G. et al (2009) Neuronal release of pro-BDNF. Nat. Neurosci. 12, 113–115.

    PubMed  CrossRef  Google Scholar 

  45. Teng, H.K., Teng, K.K., Lee, R. et al (2005) Pro-BDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J. Neurosci. 25, 5455–5463.

    PubMed  CrossRef  CAS  Google Scholar 

  46. Dicou, E, (2007) Peptides other than the neurotrophins that can be cleaved from proneurotrophins:a neglected story. Arch. Physiol. Biochem. 113, 228–233.

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Peter H. Burbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Burbach, J.P.H. (2011). What Are Neuropeptides?. In: Merighi, A. (eds) Neuropeptides. Methods in Molecular Biology, vol 789. Humana Press. https://doi.org/10.1007/978-1-61779-310-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-310-3_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-309-7

  • Online ISBN: 978-1-61779-310-3

  • eBook Packages: Springer Protocols